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Abstract

At a growing pace, the presence of robots in everyday environments is increasing
day by day. In fact, their incredibly wide applicability, spanning over various
environments and scenarios, is speeding up such spreading. Industrial and working
environments, healthcare assistance in public or domestic areas are highly benefiting
from robots’ services, that are able to accomplish manifold tasks that have become
difficult and annoying for humans. As an example, in domestic environments robots
can be deployed in a vast plethora of applications, supporting humans in everyday
activities. However, robots are not yet comparable to humans in terms of reasoning
and autonomy: a complete knowledge of the environment robots are deployed into
is often required to both accomplish the desired task and effectively improve the
interaction experience with the user. In this perspective, an active interaction with
the end user is still a valuable solution for alleviating this lack of autonomy, as in
the so-called Symbiotic Autonomy.

My thesis analyzes the impact of such a contextual knowledge in several Human-
Robot Interaction (HRI) sub-tasks, with a particular attention on when information,
desiderata, and knowledge are shared through natural language. In fact, natural
language can be considered one of the most natural way of communicating. To
this end, three HRI-specific problems have been considered. First, the importance
of the environmental context has been analyzed in a scenario where the robot is
not able to achieve its tasks on its own and it needs to ask humans for help. The
thesis will address how some perceivable characteristics of the environment might
help in designing the robot’s behaviors. The second scenario refers to the ability
of re-ranking the transcriptions hypothesized by an Automatic Speech Recognition
(ASR) in a situated command interpretation task. This dissertation will show
that context, encoded as domain-dependent information, can actually improve
the accuracy of a free-form domain-independent ASR. The third scenario relates
to the task of interpreting robotic commands, where the robot has to react to
commands expressed through natural language. This thesis will provide evidence
that a structured representation of the environmental knowledge is beneficial for
coherently mapping the sentence to the correct interpretation in a situated scenario.
The last scenario investigates to what extent, when acquiring the above mentioned
structured representation of the environment through a dialogic guidance, an active
perception of the environment improves the dialogic experience, by decreasing the
tutoring cost. In this respect, different types of context have been considered and
defined for each scenario, ranging from information that is actively perceivable and
observable by the robot, to structured knowledge acquired through pre-processing
stages.





vii

Acknowledgments

Sometimes it just takes a little longer to get to your destination, but if you make
sure to enjoy the journey...

During my journey, I had the honor to work with brilliant researchers, and to be
supported by wonderful people.

First, I want to thank my advisor, Daniele Nardi. His passion for research,
teaching, and dedication to young students has been of inspiration for my growth as
a researcher. I enjoyed each and every single moment spent together, chatting on
interesting research problems, traveling all around the world to show our works and
going biking through mountain paths.

Then, I would like to thank my co-advisor Roberto Basili and Danilo Croce.
Actually, my journey started thanks to their passion, encouragement, and support.
I really enjoyed the 8 years working together, full of discussions (till late night) to
improve our research and understand this wonderful world that is Natural Language.
Without your dedication, I would not have been who I am.

I am grateful to Oliver Lemon who gave me the opportunity to enrich my journey
with a wonderful experience and to keep working in his lab.

Thanks to all the Lab.Ro.Co.Co. members, for having been more than simple
colleagues during these three years. In particular, I want to thank Francesco: we
started our journey together, sharing ideas, problems, and pink rooms. I am grateful
to the SAG members, in particular, Giuseppe and Emanuele, for having shared
their passion, knowledge, and friendship with me. Thanks to all the Interaction
Lab members. Someone else said that friendship is born at the moment when one
man says to another: What! You too? I thought that no one but myself... Thanks,
Christian and Yiannis for your friendship and the 6 months spent together.

Thanks to all my friends in Cittareale and Rome, in particular, Giorgio, Andrea,
Valerio, Tiziano, Andrea, and Paolo: you all have been the anchor that kept my feet
in the real world, contributing to shape the person I am now.

Thanks to Flavia, for being such a wonderful partner since more than 10 years.
In you, I found support, comprehension, friendship and, definitely, the love of my
life. We grew up together and I hope we will become old together.

Last but not least, thanks to my family, my father Angelo, my mother Fiorella
and my sister Valentina. I could not have wished better for my life: you have been
silently supporting me throughout my life, always indicating to me the right path to
follow. If I reached the destination it is only thanks to you.

This thesis is dedicated to Matteo and Martina: may all your dreams come true.
...eventually you get there.





ix

Contents

1 Introduction 1
1.1 Working Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Situated Interactions with Robots . . . . . . . . . . . . . . . . . . . 6

1.2.1 Socially Acceptable Behaviors . . . . . . . . . . . . . . . . . . 6
1.2.2 Understanding Human Language . . . . . . . . . . . . . . . . 7
1.2.3 Instructing Robots through Natural Language . . . . . . . . 9

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Spoken Human-Robot Interaction: Problems and Resources 15
2.1 Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Spoken Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . 16
2.3 Dialogue Management in Human-Robot Interaction . . . . . . . . . . 18
2.4 Semantic Maps and Robot Perception . . . . . . . . . . . . . . . . . 19
2.5 The Symbiotic Autonomy Paradigm . . . . . . . . . . . . . . . . . . 21

2.5.1 Human Augmented (Semantic) Mapping . . . . . . . . . . . . 22

3 The Role of Context in Robot Behavior Modeling 25
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 A Study on Collaboration Attitude in Symbiotic Autonomy . . . . . 27
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 User Study 1: Experimental Results . . . . . . . . . . . . . . . . . . 32
3.5 User Study 2: Experimental Results . . . . . . . . . . . . . . . . . . 35
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 The Role of Context in Speech Recognition 39
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Re-Ranking Speech Hypotheses through Domain-dependent Knowledge 41

4.2.1 Grammar-based SLU for HRI . . . . . . . . . . . . . . . . . . 42
4.2.2 A Grammar-based Cost Model for Accurate ASR Ranking . . 43

4.3 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 45



x Contents

4.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 The Role of Context in Language Modeling 51
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Grounded Interpretation of Situated Commands through Perceived

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Knowledge and Language for Robotic Grounded Command

Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Grounding: a Side Effect of Linguistic Interpretation and

Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Contextually Informed Interpretation: the Language Under-

standing Cascade . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Experimental Evaluation and Results . . . . . . . . . . . . . . . . . . 66

5.3.1 Frame Detection . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Boundary Identification . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Argument Classification . . . . . . . . . . . . . . . . . . . . . 69
5.3.4 End-to-End Processing Cascade . . . . . . . . . . . . . . . . . 69

5.4 HuRIC - Human-Robot Interaction Corpus . . . . . . . . . . . . . . 71
5.5 The LU4R framework: adaptive spoken Language Understanding For

Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5.1 The Robotic Platform . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 The LU4R component . . . . . . . . . . . . . . . . . . . . . . 80

5.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 The Role of Context in Dialogue Modeling 85
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Acquiring Semantic Attributes through Interaction and Perception . 87

6.2.1 Overall System Architecture . . . . . . . . . . . . . . . . . . . 88
6.2.2 Visual Object Classification . . . . . . . . . . . . . . . . . . . 89
6.2.3 An Adaptive Dialogue Strategy for Interactive Mapping Tasks 90

6.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.2 Visual Object Dataset . . . . . . . . . . . . . . . . . . . . . . 96
6.3.3 User Simulation for the Learning Task . . . . . . . . . . . . . 96

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5 Demonstration on Real Robot . . . . . . . . . . . . . . . . . . . . . . 99
6.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusion and Discussion 103
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Chapter 3: The Role of Context in Robot Behavior Modeling 104
7.1.2 Chapter 4: The Role of Context in Speech Recognition . . . 105
7.1.3 Chapter 5: The Role of Context in Language Modeling . . . 105
7.1.4 Chapter 6: The Role of Context in Dialogue Modeling . . . . 106

7.2 Thesis Statement and Final Remarks . . . . . . . . . . . . . . . . . . 107



Contents xi

A Technical Preliminaries 129
A.1 Machine Learning for Spoken Human-Robot Interaction . . . . . . . 129

A.1.1 An Introduction to Supervised Learning . . . . . . . . . . . . 130
A.1.2 An Introduction to Automated Decision Making . . . . . . . 146
A.1.3 Generalizing Lexical Semantics through Distributional Models 150

A.2 Machine Learning for Visual Perception . . . . . . . . . . . . . . . . 154
A.2.1 Load-Balancing Self-Organizing Incremental Neural Network 155





xiii

List of Figures

0.1 Example of robots in cinematography . . . . . . . . . . . . . . . . . xxii
0.2 C-3PO - Star Wars (1983) . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1.1 The iRobot Roomba . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Softbank Robotics family: Nao, Romeo and Pepper (left to right).

Photo © SoftBank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Humans and robots do not speak the same language. A full collection

of processes is required to enable an effective communication between
the two actors. Moreover, interactions are context-aware and the
above processes must take into account the role of the operational
context, in order mimic humans cognitive processes. . . . . . . . . . 3

1.4 The operating scenario: Daniele, Anna, Roy and “The Mug” living in
the new home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sketch of the knowledge contained into a Semantic Map . . . . . . . 20

3.1 The behavior of the robot must be designed according to the environ-
mental conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Modified TurtleBot robot. The platform deployed is higher than the
standard version, and features a tablet which is used to carry out
interactions with users. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Questionnaire used in the first user study to evaluate the Collaboration
Attitude, showing the numbers of users for the two choices (i.e., yes
or no), at each stage of the questionnaire. . . . . . . . . . . . . . . . 31

3.4 Questionnaire used in the second user study to evaluate the Collab-
oration Attitude, showing the numbers of users for the two choices
(i.e., yes or no), at each stage of the questionnaire. . . . . . . . . . . 32

3.5 Collaboration Attitude means and standard errors of the first user
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Collaboration Attitude analysis of the second user study . . . . . . . 35

4.1 Speech recognition can be improved by taking into account domain-
dependent information. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Operational context allows to ground human language to the environ-
ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Layered representation of the knowledge involved in the interpretation
of robotic commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xiv List of Figures

5.3 Viterbi decoding trellis of the Boundary Identification step (Sec-
tion 5.2.3), for the running command “take the mug next to the
keyboard”, when the interpretation 5.5 is evoked. The label set
refers to the IOB2 scheme, so that yi ∈ {B, I,O}. Feature vec-
tors xi are obtained through the φ function. The best labeling
y = (O,B, I,B, I, I, I) ∈ Y+ is determined as the sequence maxi-
mizing the cumulative probability of individual predictions. . . . . . 62

5.4 The LU4R framework architecture . . . . . . . . . . . . . . . . . . . 76
5.5 The LU4R Android app . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 ROS computation graph of the LU4R ROS interface . . . . . . . . . 78
5.7 The LU4R interpretation cascade . . . . . . . . . . . . . . . . . . . . 80

6.1 Task-based dialogic interactions are more effective when context is
properly exploited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Overview of system architecture for semantic attributes learning . . 88
6.3 The simulated environment for interactive semantic attributes acquisi-

tion. The left block shows the labels available within the dataset; the
grid map in the center emulates the environment in which the robot
is moving, where green cells refer to correctly recognized objects, red
cells are the objects that have not been already discovered, while the
orange cell is the targeted object; on the right, the dialogue flow and
the images of the targeted object are shown . . . . . . . . . . . . . . 94

6.4 Local Accuracy evaluation . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Results of the experimental evaluation, provided in terms of Local

Accuracy (left) and Cumulative Tutoring Cost (right), along with 95%
Confidence Intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 The robot used in the real scenario demonstration . . . . . . . . . . 100

7.1 Interplay between context and Behavior, Language and Dialogue
modeling in a Situated HRI . . . . . . . . . . . . . . . . . . . . . . . 104

A.1 PAC learning: example of the concept “Average Build” . . . . . . . 131
A.2 Points in R2 shattered by separating hyperplanes . . . . . . . . . . . 132
A.3 SVMs’ hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.4 Best separating hyperplane . . . . . . . . . . . . . . . . . . . . . . . 134
A.5 A mapping φ which makes separable the initial data points . . . . . 137
A.6 Example of Markov chain (automa representation) . . . . . . . . . . 140
A.7 Example of trellis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.8 Example of a Markov Decision Process . . . . . . . . . . . . . . . . . 147
A.9 Typical sketch of a Reinforcement Learning agent . . . . . . . . . . . 149
A.10 Model architectures proposed in word2vec . . . . . . . . . . . . . . . 154



xv

List of Tables

3.1 User Study 1: data statistics . . . . . . . . . . . . . . . . . . . . . . 33
3.2 User Study 1: One-Way ANOVA results . . . . . . . . . . . . . . . . 34
3.3 t-Test: Two-Sample Assuming Equal Variances . . . . . . . . . . . . 34
3.4 User Study 2: data statistics . . . . . . . . . . . . . . . . . . . . . . 35
3.5 User Study 2: One-Way ANOVA results . . . . . . . . . . . . . . . . 35

4.1 Results in terms of P@1 and WER . . . . . . . . . . . . . . . . . . . 47
4.2 Results in terms of P@1 and WER obtained over data used in [15] . 48

5.1 Feature modeling of the three steps (i.e., FD, BI and AC) . . . . . . 66
5.2 FD results: evaluating the whole span . . . . . . . . . . . . . . . . . 67
5.3 BI results: evaluating the whole span . . . . . . . . . . . . . . . . . . 68
5.4 AC results: evaluating the whole span . . . . . . . . . . . . . . . . . 69
5.5 Evaluating the end-to-end chain against the whole span . . . . . . . 70
5.6 Evaluating the end-to-end chain against the semantic head . . . . . 70
5.7 HuRIC: some statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.8 Distribution of frames and frame elements in the English dataset . . 72
5.9 Distribution of frames and frame elements in the Italian dataset . . 72

6.1 Dialogue Examples from the synthetic Dialogue Collection: (a) the
user takes the initiative (b) the learner takes the initiative. . . . . . 88

6.2 Table of Costs to the Human tutor within Conversation . . . . . . . 95
6.3 Example Conversations between the RL-based Learning Agent (L)

and the Simulated User (T): (a) Learner with low confidence (b)
Learner with higher confidence. . . . . . . . . . . . . . . . . . . . . . 97





xvii

Acronyms

AC Argument Classification. 65–67, 69

AI Artificial Intelligence. 22, 129

AIML Artificial Intelligence Markup Language. 30, 78–80

AMR Abstract Meaning Representation. 81

ASR Automatic Speech Recognition. v, 7, 10, 13, 17, 30, 39–44, 46–49, 77, 81, 99,
105

BI Boundary Identification. 63–68

CCG Combinatory Categorial Grammar. 17

CFG Context-Free Grammar. 17

CFR Command Frame Representation. 79, 81

CNN Convolutional Neural Network. 85, 89, 155

CRF Conditional Random Field. 17, 53

DM Dialogue Manager. 9, 19, 30, 78, 79, 85, 87, 89, 101, 106

DS Distributional Semantics. 18, 21, 51, 53, 54, 59, 65–67, 69, 70

FD Frame Detection. 61–67

FSG Finite State Grammar. 41

GUI Graphical User Interface. 30

HAM Human Augmented Mapping. 9, 15, 17, 22, 23, 56, 75, 85, 86

HMM Hidden Markov Model. 140, 141, 143, 145

HRI Human-Robot Interaction. v, 1, 2, 4, 6, 7, 11, 13, 15–19, 21, 22, 28, 38, 39,
42, 48, 55, 56, 81, 83, 103, 104, 155

HuRIC Human-Robot Interaction Corpus. 8, 40, 46, 66, 71, 73, 75, 80, 84, 106



xviii Acronyms

IFR International Federation of Robotics. 1

KB Knowledge Base. 30, 78–80

KeLP Kernel-based Learning Platform. 61, 66, 81

LB-SOINN Load-Balancing Self-Organizing Incremental Neural Network. 9, 85,
89, 99, 100, 106, 155, 156

LU4R adaptive spoken Language Understanding chain For Robots. 9, 52, 75–81,
83, 84

MDP Markov Decision Process. 9, 12, 85, 91, 92, 97, 100, 106, 107, 146–149

ML Machine Learning. 8, 11–13, 17, 52, 60, 100, 105, 106, 129, 130, 150

NL Natural Language. 2, 6, 10, 13, 15–19, 42, 48, 51, 71, 81, 84, 89, 103–105, 107

NLG Natural Language Generation. 89

NLP Natural Language Processing. 129

NLU Natural Language Understanding. 41, 49, 52, 89

NP Noun Phrase. 55

PAC Probably Approximately Correct. xiv, 130–132

POMDP Partially Observable Markov Decision Process. 147

POS Part-Of-Speech. 62, 64, 65, 71, 74, 80, 143

PP Prepositional Phrase. 8, 51, 53, 55, 68

REG Referring Expression Generation. 18

RL Reinforcement Learning. xv, 9, 12, 13, 85, 88, 89, 91, 92, 97, 100, 106, 146, 148,
149

ROS Robot Operating System. 77–80

SARSA State-Action–Reward-State-Action. 97, 149

SHRI Spoken Human-Robot Interaction. 13, 15, 17, 18, 49, 84, 101, 103–107, 130

SKB Support Knowledge Base. 77, 79

SLM Statistical Language Model. 41

SLU Spoken Language Understanding. 56, 75–77, 80

SOINN Self-Organizing Incremental Neural Network. 155



Acronyms xix

SRL Semantic Role Labeling. 53

SVM Support Vector Machine. xiv, 17, 60, 61, 81, 133, 137, 138, 143–145, 155

SVMhmm Hidden Markov Support Vector Machine. 8, 51, 60, 61, 66, 81, 106, 145,
146

SVMstruct Structural Support Vector Machine. 143, 145

VP Verb Phrase. 55

XDG eXtended Dependency Graph. 81





xxi

Preamble

Robotics has always fascinated humans. Robots have been part of the popular
culture since the dawn of time, even before a clear understanding of what a robot is,
stimulating humans’ fantasy and dreams. Such attraction has been motivated by
the mental representation of the robot, rather than the robot itself, intended as a
machine. Humans are continuously representing the robot as an expression of its
being and capabilities. The idea of creating something that is able to reproduce
human’s behaviors and dynamics pushed the research to get where we are today.
In fact, robots are really becoming “alive”, in the sense that, what we have been
imagining for years (or a good approximation of it) is eventually getting out of
academia and research centers and becoming part of our everyday life.

On the one hand, it is true that robotics is the timeless humans’ dream; on the
other hand, it is interesting to contextualize robotics within the popular culture, to
understand what the end user is expecting from such systems. Among others, sci-fi
cinema and literature are the arts that mostly contributed to creating such a dream
of robots and that established questions and challenges researchers are still trying
to find a solution to.

One of the most famous examples of an Artificial Intelligence is HAL 9000, from
Kubrick’s “2001: A Space Odyssey”. There is a quote that is particularly significant
to us, as it poses several questions about what a robot is expected to do:

HAL 9000: “I’m afraid. I’m afraid, Dave. Dave, my mind is going.
I can feel it. I can feel it. My mind is going. There is no question
about it.”

(2001: A Space Odyssey – 1968 )

Such excerpt provides several hints for reflection. First, “I’m afraid” and “I can
feel it” suggest a specific feature for an artificial being: the ability to feel something,
to perceive sentiment and react accordingly. Is it possible for a robot to manifest its
feelings and thoughts? Do we really need robots that are able to enter our inner life
and operate on it? Second, when HAL 9000 says “My mind is going” it means it is
aware of itself, capable of identifying and understand its limitations and state.

If you are reading this thesis, you probably know “The Hitchhiker’s Guide to the
Galaxy”, a sci-fi book written by the visionary writer Douglas Adams.



xxii Acronyms

(a) Marvin, the Paranoid
Android - The Hitch-
hiker’s Guide to the
Galaxy (2005)

(b) Andrew - Bicentennial Man (1999)

Figure 0.1. Example of robots in cinematography

Marvin: “Here I am, brain the size of a planet, and they ask me to
take you to the bridge. Call that job satisfaction, ’cause I don’t.”

(The Hitchhiker’s Guide to the Galaxy – 1979 )

Here, the depressed service robot Marvin (Figure 0.1(a)) complains about the
way humans make use of it. Thanks to its infinite computational capabilities, it
would be able to do more complex tasks than simply escorting people to places,
and this is the reason for its depression. In this case, the robot is supposed to
be an extremely powerful cognitive system, that is able to accomplish complex
computational tasks.

Another example is the robotic main character of the “Bicentennial Man” (Fig-
ure 0.1(b)). The robot “Andrew” (Robin Williams) is introduced into a family home
to perform housekeeping and maintenance duties and, at some point, the patriarch
of the family “Sir” teaches Andrew how to tell jokes:

Sir: “Why did the chicken cross the road?”
Andrew: “One does not know, sir, possibly a predator was behind

the chicken, or possibly there was a female chicken on the other
side of the road if it’s a male chicken. Possibly a food source,
or depending on the season it might be migrating. One hopes
there’s no traffic.”

Sir: “To get to the other side.”
Andrew: “To get to the other side. Ah, why is that funny?”
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Figure 0.2. C-3PO - Star Wars (1983)

(Bicentennial Man – 1999 )

In this case, the robot is a home assistant, supposed to help humans in domestic
tasks and to entertain people.

Cinematography and, in general, popular culture are having high and diverse
expectations of what robots are supposed to do. Sometimes the robot is seen as a
sentimental entity, that is able to perceive and replicate emotions, sometimes as an
extremely robust and powerful system, capable to perform very complex tasks that
would be impossible for humans to accomplish. However, there is a leading thread
that connects all the above fictional interactions (and the usual representation of
an AI): the way robots communicate with humans. In the above examples (but, in
general, every time humans refer to cognitive systems), humans do not play with some
synthetic user interfaces to interact with the system. Robots are intelligent systems
that, in turn, do not reply with some special Morse code or through an artificial
communication protocol. Hence, robots must be provided with the capability of
understanding and speaking the Natural Language. For a robot, the interaction
capability is so much essential that the lively imagination of George Lucas created an
extreme example of a robotic platform, “C-3PO” (Figure 0.2), whose main feature
is the ability to speak “over six million forms” of communication:

Luke: “Do you understand anything they’re saying?”
C-3PO: “Oh, yes, Master Luke! Remember that I am fluent in over

six million forms of com—”
Han Solo: “What are you telling them?”
C-3PO: “Hello, I think. I could be mistaken.”

(Star Wars Episode VI: Return of the Jedi – 1983 )

Thanks to its ability of understanding and speaking so many languages, C-3PO
is often used as an interpreter to other forms of life.
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Robotics has always fascinated humans, as well as the idea of enabling robots and
intelligence systems of understanding and speaking (at least) the natural language
has always fascinated me. For this reason, I decided to commit my research in
contributing to this goal.
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Chapter 1

Introduction

Robots are rapidly becoming part of our everyday environments, ranging from
industrial to domestic ones, where they are expected to support human activities in
everyday scenarios, by interacting with different kinds of user. In the last decade,
several robotic platforms have been marketed, ranging from vacuum cleaners to
industrial or domestic robots. Due to the wide applicability, even the most important
IT companies are investing in developing platforms and tools to support the spread
of robots in our homes. The International Federation of Robotics (IFR) has just
released their two annual World Robotics 2017 reports covering 2016 results. The
IFR estimated that sales of all types of service robots for domestic tasks, e.g., vacuum
cleaning, lawn mowing, window cleaning, could reach almost 32 million units in the
period 2018-2020. Among them, the iRobot Roomba (Figure 1.1) is probably one
of the best examples, as for its spread in the market and the innovation it brought.
It is a vacuum cleaner, able to autonomously navigate the environment, map it
and properly plan the cleaning of our homes. Other examples are the Softbank
Robotics products (Figure 1.2) currently available both as off-the-shelf tools and for
research purposes in manifold activities and tasks (e.g., welcoming customers in a
mall [57, 81], supporting teachers during classes [102] or playing soccer [85]).

Human-Robot Interaction (HRI) is a field of research that aims at designing
robotic systems that are meant to support humans in everyday tasks. Interaction,
by definition, requires communication, that can take several forms. However, in
all the above contexts, an essential feature the robot must exhibit is the ability of

Figure 1.1. The iRobot Roomba
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Figure 1.2. Softbank Robotics family: Nao, Romeo and Pepper (left to right).
Photo © SoftBank

understanding and speaking the humans’ language. Cognitive systems are expected
to efficiently interact with others through the humans’ preferred mode of communi-
cation: Natural Language (NL). Arguably, NL is one of the most effective way
of communicating: it is hands-free, users do not need a special training and it is
expressive and efficient. Designing robots with a proper and effective NL interface
would enable such devices to be used by untrained users as, for example, elderly
people or children.

However, humans and robots do not speak the same language. In fact, as
displayed in Figure 1.3, while speaking and understanding NLs is an innate cognitive
ability for humans, this is not the true for robots, where a complete stack of
computational processes are required to map NL communications to binary code and
enable effective interactions. The robot must be able to respect humans’ social rules
while interacting. Furthermore, whenever the user utters a sentence, the audio signal
must be properly mapped into computational structures manageable by the robot;
hence, whenever such signals have been recognized, they have to be understood, in
the sense that the user real intents must be extracted from the sentence. Finally,
according to all the information collected, the robot must be able to plan a coherent
response, mapping its internal structures to meaningful NL sentences.

This thesis tackles a specific problem that arises when designing a cognitive robot
with NL communication capabilities: the role of the contextual information in
HRI. In fact, NL communication acquires a specific nature when applied to HRI.
Linguistic interactions are context-aware as both the user and the robot access and
make references to the environment, i.e., perceived entities of the real world [36].
Moreover, people are biased by the surrounding environment and such interference
is reflected into the communicative processes.

This thesis argues that:

1. the interplay between context and interaction in NL is motivated by different
reasons, generating different forms of contextual knowledge;

2. different forms of contextual knowledge can be exploited to improve the
individual HRI sub-tasks (Figure 1.3).
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Figure 1.3. Humans and robots do not speak the same language. A full collection of
processes is required to enable an effective communication between the two actors.
Moreover, interactions are context-aware and the above processes must take into account
the role of the operational context, in order mimic humans cognitive processes.

First, context should be carefully taken into account when designing robots
behavior to maximize users’ expectations and task achievement. In fact, the opera-
tional context introduces biases on the way people interact with robots. Robots, in
turn, should be able to detect the context and properly exploit such information
to optimize their social behavior. For example, a person that is performing a task
might not be willing to interact with a robot.

Second, the correct transcription of user’s vocal input highly depends on the
operational domain. In fact, whenever such information is available, the robot
should be able to filter out implausible speech hypotheses through domain-dependent
evidence, thus allowing more appropriate transcriptions to emerge from the list of
hypotheses.

Third, language significantly interplays with context in the sense that meaning
must adhere to the physical world: the interpretation of an utterance is strongly
interlaced with the perceived context, as pointed out by psycho-linguistic theo-
ries [160]. A correct interpretation is thus more than a linguistic mapping from
an audio signal (e.g., the user’s utterance) to a meaning representation formalism.
Correctness implies physical coherence and the contextual environment must be
observable and observed.

Finally, the interaction flow is strictly interlaced with the context as well. En-
abling the robot to reason and make inferences about the environment is essential to
improve the interaction experience. For example, context might help in minimizing
the tutoring cost (i.e., number of dialogue turns required to fulfill the goal of a
task-based interaction), providing guesses for a teaching task.
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Daniele Anna

Roy

The Mug

Figure 1.4. The operating scenario: Daniele, Anna, Roy and “The Mug” living in the new
home

This introduction is structured as follows. Section 1.1 depicts a working scenario,
that helps in contextualizing the contributions developed by this thesis. In Section 1.2
the concept of Situated Interaction is presented, along with a detailed discussion of
three HRI sub-problems that have been addressed in our work. Section 1.3 analyzes
the contributions of the thesis, providing a list of publications that contributed in
drafting this thesis. Finally, Section 1.4 provides a reader-friendly structure of the
thesis organization.

1.1. Working Scenario

As a motivation of the work, this section presents an operating scenario, in which
the contribution of the context is emphasized with respect to the addressed tasks.
Daniele and Anna just moved to a new place (Figure 1.4). They decided to buy
a service robot, called Roy. Roy is a robotic platform that is meant to execute
simple tasks in a domestic environment, such as manipulating objects with its arms,
perceiving the surrounding environment through its RGB-D camera, as well as
recognizing objects and entertaining humans with simple, but effective interactions.
To properly execute the requested commands and reason about the environment,
Roy needs a structured representation of its world (see Section 2.4) that is, in this
case, the new home of Daniele and Anna [126].

As Daniele and Anna just moved to the place, Roy needs to acquire the repre-
sentation of the new home. So, during the first tour of the new house, Roy follows
Daniele and Anna and it starts building its metric map, attaching semantic informa-
tion of the environment. In doing this, Roy is allowed to leverage the help of the
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users (see Section 2.5.1), by asking them for information of the objects populating
the environment. The process of building this map is indeed a combination of
its perception capabilities along with humans’ feedbacks acquired through natural
language interactions. These feedbacks are meant to fulfill missing information, such
as the category of an object, its color or possible affordances. Being both researchers,
Daniele and Anna are often busy and they do not want to be bothered too much
(i.e., Roy is supposed to help them, not the contrary), even though they know that a
little effort is required in order to help Roy in better performing the requested tasks.
Hence, whenever such a collaboration is not too much invasive, it can be beneficial
for everyone. However, Roy is an intelligent robot and when building this map, it
pays attention to some details thanks to its capability of exploiting the contextual
environment. In fact, it knows that when Daniele and Anna are approached too
closely, they feel uncomfortable and not willing to help it (see Chapter 3). It also
knows that Anna is usually more inclined to collaborate with it [44]. Hence, Roy
keeps a certain distance before asking for help [118] and prefers to bother Anna
instead of Daniele. Moreover, when Roy detects a new object, it is able to exploit
the images taken with its RGB-D camera to make some inferences about the object.
For example, as it has already seen some cups, it will not ask whether the new
mug bought during a trip in Lapland is actually a mug (see Chapter 6). All this
knowledge help Roy in minimizing both discomfort and effort required in helping it.

As Daniele is often focused on his research, he usually controls Roy through
ambiguous commands [178]; however, Daniele is aware that Roy will be able to
disambiguate such commands thanks to its capabilities of interpreting natural
language by leveraging its representation of the environment. For example, Daniele
loves drinking tea while working on a new paper in front of its laptop, but sometimes
he misplaces his preferred mug. When Daniele asks Roy to “take the mug next to
the keyboard and fill that cup of tea”, the robot might not know what to do. In fact,
depending on whether the mug is already near the keyboard or not, the plan to be
executed significantly changes. Whenever it is close to the mug, Roy just needs to
grab it and pour some tea. Otherwise, the robot needs to locate the mug, bring it
next to the laptop and, then, fill the cup with tea. Moreover, Daniele when referring
to its mug, sometimes he uses the word “mug”, sometimes “cup” [74]. Fortunately,
Roy is a cognitive robot and, by reasoning on the contextual environment, it
will be able to interpret the command coherently with the status of the world it is
operating into. Moreover, Roy is so intelligent that it knows that both “mug” and
“cup” refer to the same entity (i.e., Daniele’s beloved mug) (see Chapter 5). Moreover,
as Anna loves to play her piano, the acoustic conditions of the environment do
not allows Roy to properly recognize Daniele’s commands. Hence, though Roy’s
speech recognition capabilities are able to produce a list of candidate transcriptions of
Daniele’s command, the correct one is not often ranked in first position. For example,
the audio signal corresponding to the sentence “take the mug next to the keyboard”
is often transcribed as the meaningless sentence “deck the madness the keyboard”
and the correct transcription is lost somewhere within the hypothesis list. However,
Roy is able to exploit its contextual knowledge to filter out transcriptions that
are syntactically and semantically out of the specific application domain.

It is clear that, in order to successfully fulfill the assignments, Roy must be able
to properly exploit the contextual information of its surrounding world. The goal of
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this thesis is thus to contribute to the development of robotic platforms that display
capabilities similar to those attributed to Roy.

1.2. Situated Interactions with Robots
Human-robot interactions are situated, in the sense that both the user and the robot
are co-present in a shared physical world and make references to the environment,
objects and entities populating it [36]. To this end, in physically situated settings,
robots have to display diverse additional competencies. On the one hand, humans’
actions are expected to be understood within the broader situational context; on
the other hand, robotic platforms need to continuously mediate among their be-
havior and humans’ one. Hence, for enabling robots to properly reason about their
surroundings and coherently behave with it, it is essential to implement effective
NL communications that take into account the operational context: due to limited
perception capabilities, the robot’s representation of the shared world represents
a robust bridge between the physical world and the robot’s reasoning capabilities.
Thus, exploiting both the perceived and structured environmental context is an
essential building block of any situated interactive system.

This section presents three situated scenarios addressed in this thesis. They all
refer to the motivating example presented in Section 1.1, where the interplay between
reasoning and context is essential, being a valuable mechanism for improving the
robot’s understanding and behaving capabilities.

1.2.1. Socially Acceptable Behaviors

The scenario depicted in Section 1.1 refers to a typical Symbiotic Autonomy situation
(introduced in Section 2.5), where robots and humans help each other to go beyond
their constraints and complete their tasks. In order to overcome their limitations,
robots are allowed to ask for help. This is the case of Roy that needs Daniele and
Anna’s help for building the structured representation of the environment: as Roy is
provided with limited perception capabilities, the only way it has to achieve the task
of creating the map is to rely on humans’ help. When the robot takes the initiative
and asks humans for help, there is a change of perspective in the interaction, not
yet specifically addressed by HRI studies. This specific HRI framework, where the
robot exploits the humans’ help, can become a widespread and practical approach.
However, people are not always willing to help robots: even in human-human
interactions, people have to pay attention to common social rules, in order to accept
the other as a social collaborator. The same social rules are expected to be followed
by robots, as they are meant to become social partners of our everyday lives in the
next future.

It is thus essential, when designing the robot’s behavior, to take into account the
conditions under which the likelihood to obtain help is maximized. Such conditions
are linked to the context in which the robot is operating. An effective robotic
platform should be able to detect the contextual conditions under which it is allowed
to establish a successful interaction with humans. Even more so, in the depicted
scenario the interaction is essential for the robot itself, as the ultimate goal is
obtaining information for fulfilling missing knowledge.
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Before doing this, we need to assess: (i) the correspondence between Human-
Human Interaction and HRI social rules, and (ii) the contextual factors that mostly
impact on the establishment of the interaction itself. For example, Roy knows that
Daniele and Anna do not like to be approached too closely. As a consequence, this
factor is reflected in Roy’s behavior that will keep a proper distance when approaching
them [118]. Other constraints can be drawn from psychological studies, suggesting
that, for example, collaborative attitude highly depends on the gender, with females
being more collaborative than males [44, 122, 154, 158]. As a consequence, when
asking for help, a robot might prefer females, as this decision would maximize the
probability of receiving help.

One contribution of this thesis is represented by two user studies performed in
such a scenario and presented in Chapter 3. The first user study [134] confirms the
influence of conventional observable contextual factors (i.e., proxemics, gender,
height) on people’s collaboration attitude, while suggesting that the operational
environment in which the interaction takes place (i.e., relaxing vs working) may
not be significantly relevant. The second user study is carried out to better assess
the influence of the activity performed by humans, when they are approached by
the robot, as an additional and more compelling characterization of operational
environment (i.e., standing vs sitting).

Hence, the overall findings of the above studies suggest that the attitude of users
towards robots in the setting of Symbiotic Autonomy is indeed biased by contextual
factors, which can thus be used to design socially acceptable robot behaviors.

1.2.2. Understanding Human Language

In the scenario depicted in Section 1.1, an important feature that Roy exhibits is the
ability to react to spoken commands. This requires the understanding of the user
utterance with an accuracy able to trigger the robot reaction. However, the correct
interpretation of linguistic exchanges depends on manifold dimensions, including
physical, cognitive and language-dependent aspects related to the environment.

When Roy is asked to “take the mug next to the keyboard and fill that cup of tea”,
the robot has to process the audio signal corresponding to the uttered command, in
order to feed its language understanding capabilities with the correct transcription.
This is not a trivial issue in a real scenario, as environments are often noisy and
spoken language is affected by misspelling, repetitions, and involuntary pauses.

A contribution of this thesis has been the design and development of a practical yet
robust re-ranking approach for generic Automatic Speech Recognitions (ASRs). The
proposed technique exploits contextual information provided by the application
domain, in order to filter out implausible transcriptions and to promote candidates
that are more likely in the targeted domain. Such a domain-dependent information
has been encoded through a grammar, augmented with semantic attachments about
actions and entities populating the environment, designed to model typical commands
expressed in scenarios that are specific to service robotics. The outcomes obtained
through an experimental evaluation show that the approach is able to effectively
outperform the ASR baseline, obtained by selecting the first transcription suggested
by the ASR.

Moreover, though the transcription has been correctly recognized, the robot must



8 1. Introduction

be able to make some assumptions and resolve diverse linguistic ambiguities in order
to accomplish the requested task. First, all the objects referred by the command
must exist into the environment. In situated scenarios, interactions are highly linked
to the context, as the communication usually makes references to the environment
and entities composing it. Second, Roy needs a structured representation of the
physical environment, in order to enable reasoning over the operational environment,
e.g., the Semantic Map introduced in Section 2.4. Moreover, mechanisms to ground
linguistic symbols to the entities of such a structured representation are essential
for several reasons. On the one hand, Roy must be aware of which objects it has to
physically operate on in order to accomplish the task. On the other hand, a complete
knowledge of the environment can be helpful to resolve inherent ambiguities of the
language. For example, the first action of the above command (“take the mug next
to the keyboard”) might assume two different interpretations, depending on where
the Prepositional Phrase (PP) “next to the keyboard” is attached, i.e., either to the
noun mug or to the verb take.

However, as introduced before, the language is meant to reflect the context in
which it is used: whenever the mug and the keyboard are close into the environment,
the PP will be attached to mug and Roy will just need to pick up the mug; otherwise,
Roy has to reach the mug (that is somewhere into the environment) and bring it
next to the keyboard, as the PP is attached to the verb take. Hence, the operational
context in which the interaction takes place can change the interpretation of the
language; in a command interpretation task, for a robot to meet the user’s desiderata,
it is fundamental to properly exploit the perceived context.

Another contribution of this thesis (detailed in Chapter 5) is a comprehensive
framework to systematically exploit contextual knowledge for grounding language
in a command interpretation task. The proposed framework is thus able to produce
interpretations consistent with Frame Semantics [53] that coherently mediate among
the world (with all the entities composing it), the robotic platform (with all its
inner representations and its capabilities) and the pure linguistic level triggered by a
sentence. The approach has been realized in a Machine Learning (ML) setting, where
contextual knowledge extracted from the Semantic Map is directly injected within
the learning algorithm. In particular, the overall understanding problem has been
decomposed into a cascade of sub-tasks, each solved through a dedicated Hidden
Markov Support Vector Machine (SVMhmm); contextual information is reflected
into features of the learning machinery.

Several experimental evaluations proved that the integration of linguistic and
perceptual knowledge actually improves the quality and robustness of the overall
interpretation process. Being the proposed approach language-independent with
respect to the adopted techniques, experiments showed also that such effectiveness
holds even when the system is applied to different languages.

Moreover, the application of such an approach requires a corpus of training
examples to generate the ML models. Hence, another contribution of this thesis has
been the creation of a dataset of robotic commands, designed to be general enough for
any robotic platform meant to operate in a domestic environment. The corpus, called
Human-Robot Interaction Corpus (HuRIC), contains a total of 897 commands in two
languages (i.e., English and Italian), providing linguistic annotations, interpretations
in terms of semantic frames, audio files, and a portion of the Semantic Map justifying
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the interpretation. The corpus has been made available to the community.
Finally, the proposed computational paradigm has been implemented in an off-

the-shelf tool, adaptive spoken Language Understanding chain For Robots (LU4R),
released to the research community. This system has been already used by several
teams in international robotics competitions.

1.2.3. Instructing Robots through Natural Language

In the running example of Section 1.1, Daniele and Anna actively support Roy in
acquiring the required knowledge about the new home, by providing natural language
feedbacks about objects of the environment. In fact, one of the main steps towards
the deployment of robotic platforms in real scenarios concerns their capability to
reference objects and locations within the operational environment. Even though
research on visual perception is pushing forward the performance of such systems,
they still cannot be always considered reliable enough to be used without human
validation. Moreover, a purely visual perception system is often not able to provide
a complete semantic description of the entities populating the environment and its
output is often limited to geometric information about the world. In addition, in
real deployments, a robot might need to learn the idiosyncratic language used by
different individuals, so that word meanings may need to be learned and adapted
through interaction. Enabling robots to properly interact with users plays a key
role in the effective deployment of robotic platforms in domestic environments:
robots must be able to rely on interaction to improve their behavior and adaptively
understand their operational world. For example, in the context of Symbiotic
Autonomy (Section 2.5) interaction is essential to fulfill missing information. This is
the case of Human Augmented Mapping (HAM) (see Section 2.5.1), where the aim
is to build a representation of the environment by relying on the interaction with
the user.

A proper and effective acquisition of semantic attributes of targeted entities
through users’ feedback is thus essential for the task accomplishment itself. Roy, in
turn, should be able to access and leverage the acquired knowledge to improve the
teaching process. In fact, these approaches are affected by tutoring costs, as the
user becomes the main source of knowledge for the robot: such online incremental
learning of semantic attributes can be tedious for the tutor, whenever the robot
does not exploit the acquired information to improve the interaction experience
and minimize tutoring cost. Hence, it would be desirable that, at some point, the
robot could autonomously acquire new knowledge, and become more and more
independent of the human, as the learning process proceeds.

A contribution of this thesis relates to a technique presented in [173] and detailed
in Chapter 6 to acquire dialogue policies for robot teaching tasks, so that Roy will
be able to minimize the tutoring cost. The proposed approach relies on a Dialogue
Manager (DM) modeled as a multi-objective Markov Decision Process (MDP),
where the optimization problem is solved through Reinforcement Learning (RL)
(Appendix A.1.2). The DM interfaces with an online incremental visual classifier,
based on a Load-Balancing Self-Organizing Incremental Neural Network (LB-SOINN)
(see Appendix A.2.1), that allows to capture contextual information, encoded
here as images of the targeted object. Through the interplay between the DM and



10 1. Introduction

the visual classifier, Roy is thus allowed to efficiently query Daniele and Anna only
whenever it really needs help.

Experiments conducted in a simulated scenario show the effectiveness of the
proposed solution, suggesting that contextual information coming from the perception
can be properly exploited to reduce human tutoring cost. Moreover, we proved that
a policy trained on a small amount of data generalizes well towards larger datasets:
the proposed online scheme, as well as the real-time nature of the processing, are
suited for an extensive deployment in real scenarios.

1.3. Thesis Contributions
Summarizing the contents of the previous sections.

Chapter 3: The Role of Context in Robot Behavior Modeling
This chapter presents an analysis of observable contextual factors that might influence
the collaborative behavior of people towards robotic platforms. In detail, this analysis
has been made through user studies by:

• introducing a systematic metrics to quantitatively measure the Collaboration
Attitude;

• identifying possibly influencing contextual factors;

• assessing the significance of the identified factors through the collected data;

• defining some simple guidelines for designing robots’ behavior in the context
of Symbiotic Autonomy.

Related Publications
• Francesco Riccio, Andrea Vanzo, Valeria Mirabella, Tiziana Catarci,

Daniele Nardi (2016). Enabling Symbiotic Autonomy in Short-Term Interactions:
A User Study. In Social Robotics - 8th International Conference, ICSR 2016, Kansas
City, MO, USA, November 1-3, 2016, Proceedings, pp. 796–807, Kansas City, MO,
USA.

• Roberto Capobianco, Guglielmo Gemignani, Luca Iocchi, Daniele Nardi,
Francesco Riccio, Andrea Vanzo (2016). Contexts for Symbiotic Autonomy:
Semantic Mapping, Task Teaching, and Social Robotics. In Symbiotic Cognitive
Systems, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February
13, 2016., pp. 733–736, Phoenix, Arizona, USA.

Chapter 4: The Role of Context in Speech Recognition
This chapter proposes a domain-specific re-ranking function for transcription lists
produced by a generic ASR. In particular, the contributions of this research are:

• the definition of contextual evidence extracted from a grammar, designed to
parse domain-dependent commands in NL, and

• a thorough experimental evaluation of the proposed method, that highlights
the impact of domain-specific information with respect to the addressed task.
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Related Publications
• Andrea Vanzo, Danilo Croce, Emanuele Bastianelli, Roberto Basili,

Daniele Nardi (2016). Robust Spoken Language Understanding for House Service
Robots. Polibits, 54, pp. 11–16.

Chapter 5: The Role of Context in Language Modeling

In this chapter, a framework for grounded language interpretation of robotic com-
mands is presented and discussed. In detail, this contribution is structured as
follows:

• the definition of a ML framework for the interpretation of robotic commands;

• the injection of contextual evidence into the learning process that allows to
interpret the command coherently with the operational environment and to
solve language inherent ambiguities at predicate level;

• a quantitatively analysis of the contribution provided by the contextual infor-
mation;

• the development of a linguistic resource that collects examples of annotated
commands, together with structured representations of the operational envi-
ronments in which such commands might be uttered1;

• the release of an off-the-shelf framework for the interpretation of spoken
commands in an HRI context2.

Related Publications
• Andrea Vanzo, Danilo Croce, Roberto Basili, Daniele Nardi (2017). LU4R:

adaptive spoken language understanding for robots. Italian Journal of Computational
Linguistics, 3(1), pp. 59–76.

• Andrea Vanzo, Danilo Croce, Roberto Basili, Daniele Nardi (2017). Struc-
tured Learning for Context-aware Spoken Language Understanding of Robotic Com-
mands. In Proceedings of the First Workshop on Language Grounding for Robotics,
Vancouver, Canada, August 3, 2017., pp. 25–34, Vancouver, Canada.

• Andrea Vanzo, Luca Iocchi, Daniele Nardi, Raphael Memmesheimer, Diet-
rich Paulus, Iryna Ivanovska, Gerhard K. Kraetzschmar (2017). Benchmark-
ing Speech Understanding in Service Robotics. In Proceedings of the AIxIA Workshop
on Artificial Intelligence and Robotics (AIRO@AIxIA), Bari, Italy, November 14,
2017., pp. 34-40, Bari, Italy.

• Daniele Evangelista, Wilson Umberto Villa, Marco Imperoli, Andrea
Vanzo, Luca Iocchi, Daniele Nardi, Alberto Pretto (2017). Grounding
natural language instructions in industrial robotics. In Proceedings of the IROS 2017
Workshop "Human-Robot Interaction in Collaborative Manufacturing Environments
(HRI-CME), Vancouver, Canada, September 24, 2017.

1http://sag.art.uniroma2.it/demo-software/huric/
2http://sag.art.uniroma2.it/lu4r.html

http://sag.art.uniroma2.it/demo-software/huric/
http://sag.art.uniroma2.it/lu4r.html
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• Andrea Vanzo, Danilo Croce, Giuseppe Castellucci, Roberto Basili,
Daniele Nardi (2016). Spoken Language Understanding for Service Robotics in
Italian. In AI*IA 2016: Advances in Artificial Intelligence - XVth International Con-
ference of the Italian Association for Artificial Intelligence, Genova, Italy, November
29 - December 1, 2016, Proceedings, pp. 477–489, Genova, Italy.

• Andrea Vanzo, Danilo Croce, Roberto Basili, Daniele Nardi (2016). Context-
aware Spoken Language Understanding for Human-Robot Interaction. In Proceedings
of Third Italian Conference on Computational Linguistics (CLiC-it 2016) & Fifth
Evaluation Campaign of Natural Language Processing and Speech Tools for Italian.
Final Workshop (EVALITA 2016), Napoli, Italy, December 5-7, 2016., pp. 308–313,
Napoli, Italy.

• Emanuele Bastianelli, Danilo Croce, Andrea Vanzo, Roberto Basili,
Daniele Nardi (2016). A Discriminative Approach to Grounded Spoken Language
Understanding in Interactive Robotics. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pp. 2747–2753, New York, New York, USA.

Chapter 6: The Role of Context in Dialogue Modeling

This chapter presents an effortless conversational interaction model to properly
control the dialogue flow in a robot teaching task. In particular, this contribution is
structured along the following steps:

• the definition of a multi-objective RL framework for the acquisition of semantic
attributes of objects populating the operating environment;

• the systematic exploitation of contextual visual information, encoded as images
of the targeted object, through a comprehensive ML architecture that is able
to provide guesses to the dialogue manager with the aim of minimizing the
tutoring cost;

• the definition of a dedicated MDP, for controlling the reliability level of the
visual classifier;

• a quantitative analysis of the impact of such contextual information in mini-
mizing the tutoring cost.

Related Publications

• Andrea Vanzo, Jose L. Part, Yanchao Yu, Daniele Nardi, Oliver Lemon
(2018). Incrementally Learning Semantic Attributes through Dialogue Interaction. In
Proceedings of the 17th Conference on Autonomous Agents and MultiAgent Systems,
pp. To appear.

• Andrea Vanzo, Danilo Croce, Emanuele Bastianelli, Guglielmo Gemi-
gnani, Roberto Basili, Daniele Nardi (2017). Dialogue with Robots to Support
Symbiotic Autonomy. In Dialogues with Social Robots - Enablements, Analyses, and
Evaluation, Seventh International Workshop on Spoken Dialogue Systems, IWSDS
2016, Saariselkä, Finland, January 13-16, 2016, pp. 331–342, Singapore.
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1.4. Thesis Organization
This thesis is organized into 7 chapters as follows.

Chapter 2 Review of the literature on HRI, with a special emphasis on
Spoken Human-Robot Interaction (SHRI). Moreover, as pre-
liminary for the thesis, a detailed discussion of the concept of
Semantic Map is reported, along with the introduction of the
Symbiotic Autonomy paradigm.

Chapter 3 Definition of a formal quantitative model for evaluating the
Collaboration Attitude in the context of Symbiotic Autonomy.
Identification of possible influencing contextual factors. User
studies on the role of such contextual factors in the maximiza-
tion of Collaboration Attitude. Analysis of the insights of the
users studies for their application in robot’s behavior modeling.

Chapter 4 Definition of a re-ranking approach for a generic ASR that
relies on domain-specific evidence to improve the accuracy of
the speech recognition.

Chapter 5 Definition of a systematic ML framework for the interpretation
of robotic commands. Development of corpus for training/eval-
uating the approach. Identification of contextual information
that contributes in resolving persisting ambiguities of language.
Feature modeling for including such environmental evidence
into the ML processes. Experimental evaluation to validate the
approach. Development of a complete tool for the interpretation
of NL commands.

Chapter 6 Introduction of a RL framework for modeling the conversational
interactions in a teaching task. Definition of a novel technique
to exploit perceptual information with the aim of minimizing
the tutoring cost. Experimental evaluation of the proposed
solution and preliminary deployment on a real robot.

Chapter 7 Summary, conclusions and final remarks of the thesis. Open
questions and future directions.

Appendix A Technical discussion of the mathematical algorithms and re-
sources used in this thesis.
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Chapter 2

Spoken Human-Robot
Interaction: Problems and
Resources

The goal of the research in Human-Robot Interaction (HRI) is to realize robotic
systems that exhibit a natural and effective interaction with users: robots should
be provided with sensory systems able to understand and replicate human commu-
nication, such as speech, gestures, socially-acceptable behaviors, voice intonation,
pragmatic interpretation, and any other non-verbal interaction. HRI is indeed a
very extensive research area, that involves many different problems, communication
modalities, and solutions. As a consequence, the literature is expanding rapidly, as
confirmed by the excellent survey by Goodrich and Schultz [72] (even though no
longer fully up to date).

This chapter provides an overview of the problems, resources, and applications
involved in HRI, with a particular emphasis on interactions in Natural Language
(NL). In fact, as already outlined by the scenario depicted in Section 1.1, this thesis
focuses on robotic platforms that are able to intelligently interact with humans in
social environments through NL and improve the interaction experience by properly
leveraging the full stack of information provided by the contextual knowledge. Hence,
this chapter contextualizes the thesis contributions by providing a brief overview of
HRI (Section 2.1), along with the more specific research areas of Spoken Human-Robot
Interaction (SHRI) (Section 2.2) and Dialogue Management in HRI (Section 2.3). A
more fine-grained discussion of each contribution with respect to the specific literature
is provided in each chapter. Then the concept of Semantic Map is discussed as a
valuable source of information for enabling robots to effectively interpret human
language (Section 2.4). Finally, the novel paradigm of Symbiotic Autonomy is
introduced as motivating philosophy of the thesis (Section 2.5), together with one of
its possible applications: Human Augmented Mapping (HAM) (Section 2.5.1).

2.1. Human-Robot Interaction
Following the running example of Section 1.1, this thesis is placed in the branch
of HRI research devoted to human-robot social interaction scenarios, where the
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robotic device provides entertainment, teaching, and assistance to people. In fact,
in the depicted working scenario, Roy is expected to help Daniele and Anna in
performing domestic tasks, by paying attention to humans’ socially acceptable rules.
The research in the area has been promoted by both companies and academic groups.
Among others, Softbank is probably one of the most active company in producing
commercial robots for social HRI. Even though some of their robots are used to
play soccer [85], they are mainly meant to operate as interactive robotic platforms,
engaging the users and providing a communication as more natural as possible [57].
Mattel has developed a new version of the famous Barbie doll (called Hello Barbie1)
with speech and language recognition capabilities, with the aim of entertaining
young girls and boys through long-term conversations. However, research is still the
most interesting source of ideas for social HRI. An increasing number of robots are
being developed as therapeutic companions for elderly and children, more and more
often deployed into hospitals. Valuable examples are the works proposed in [49, 50].
Again, the use of robot interaction in education is promoted by several works (see,
for example, [3, 31, 54, 56, 79, 102]), where robotic partners are deployed in children
teaching activities. For the type of users involved, in the above domains, proper
social behaviors are essential for the correct achievement of the desired task.

However, as emphasized in Section 1.2.1, in this context robots are seen as
more than just intelligent systems; they are supposed to exhibit socially acceptable
behaviors, thus aiming at becoming companions for the humans. Proper behaviors
often depend on the operational context in which the robot is operating, composed
of people, activities and physical features of the environment. A wide range of works
investigated such problem, mostly taking the humans’ perspective [55, 86, 118, 122,
124, 159, 177]. The cited works aimed at determining the best setting for a robot,
that has to accomplish a task assigned by the user. A novelty pursued by this thesis
is a change of perspective with respect to the problem: instead of evaluating the
passive behavior of the users represented by their preferences in an HRI, this thesis
aims at assessing a proactive behavior of humans when asked for help, given changes
in the operational context. This different perspective allows to both minimize the
level of discomfort and determine the best setting for robots that approach humans
and ask for help. A detailed description of the contribution is provided in Chapter 3.

2.2. Spoken Human-Robot Interaction

The adoption of Natural Language (NL) in HRI is the leading thread of this thesis,
as for its wide applicability in most of the HRI tasks. In fact, provided that the
ultimate goal of HRI is the design of natural interfaces, a communication can be
established through several modes, ranging from gestural, haptic and verbal interac-
tions. However, humans usually communicate through NL, which, for several reasons,
can be considered one of the most effective ways of interaction. Language is natural,
in the sense that speaking is a capability we learn during our childhood, without any
particular training, but just through the acquisition of examples. Speaking is thus
an activity we are able to perform even ignoring the syntactic rules of the targeted
language. For this reason, researchers from different backgrounds have tried to apply

1http://hellobarbiefaq.mattel.com/

http://hellobarbiefaq.mattel.com/
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NL communication to HRI: we call this research endeavor Spoken Human-Robot
Interaction (SHRI).

Research has applied SHRI to deploy robotic systems in a wide variety of
environments. For example, some speech-based techniques have been used in ma-
nipulators [189], and wheeled platforms [11, 97]. Moreover, some robots on the
market support vocal interactions with users, such as the NAO Humanoid [73].
However, when NL is used to interact with robots, the interaction modality is called
situated, in the sense that humans and robots interact by making references to a
shared environment, though having different perceptions/representations of it. In
this scenario, the contextual knowledge plays a key role even in language modeling.
Initial studies on situated SHRI can be traced back to SHRDLU [179], a system able
to process natural language instructions to perform manipulation actions in a virtual
environment. Due to the nature of the task and the problems involved, taking into
account different forms of contextual knowledge into the interpretation process is
an essential feature that any SHRI system should provide. For example, in [24],
the problem of understanding humans’ language is tackled in an integrated fashion
with the Automatic Speech Recognition (ASR), by augmenting recognition grammar
rules with semantic attachments and producing the final interpretation depending on
background knowledge. Combinatory Categorial Grammars (CCGs) are used in [96]
to parse transcriptions of robotic commands obtained through ASR, for supporting
an HAM task. The meaning is then grounded to the environment by relying on
an ontology describing their operational world. A similar grounding approach is
used in [88]. In this work, the authors use Conditional Random Fields (CRFs) to
train specific semantic parsers and Semantic Maps provide anchors for linguistic
symbols. In [33], the authors propose a system for grounded interpretation of NL
navigation instructions, uttered in virtual indoor environments. The semantic parser
is based on a combination of a Context-Free Grammar (CFG) and multiple Support
Vector Machines (SVMs), while the context is here leveraged to acquire the mapping
between meaning of NL instructions and plans from humans’ demonstrations. The
symbol grounding problem is addressed also in [161], where statistical graphical
models are used to enable a mapping between words and syntactic parse structures
with concrete objects, places, paths and events in the real world. Again, a Semantic
Map is used to represent the contextual knowledge for grounding the linguistic
symbols. Conversely, in [114], active perception through vision is used as contextual
information to ground NL route instructions into robot executable commands.

The take-home message of the above brief literature analysis is that language
modeling acquires a specific nature when applied to a situated scenario, such as the
one presented in Section 1.2. In fact, linguistic interactions are context-aware in the
sense that both user and robot access and make references to the environment. An
effective robot for HRI must be able to ground the meaning (and its components)
into the physical world as the interpretation is strongly interlaced with what is
perceived [160]. This thesis makes two steps in this direction, by proposing: (i) a
re-ranking approach for a generic ASR, and (ii) a Machine Learning (ML) framework
for interpreting natural language coherently with the operating environment. The
former is designed through a cost function that leverages contextual knowledge
extracted from the application domain. Such a domain-dependent evidence allowed
thus to improve the accuracy of a generic free-form ASR and to properly select the
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most promising transcribed sentence. The latter is realized through the systematic
injection of contextual features coming from the environment, directly into the
learning/tagging process. Moreover, instead of relying on further interactions to
cope with out-of-vocabulary words, the proposed approach makes large use of models
of Distributional Semantics (DS), that improves the robustness of the overall system
in terms of generalization capabilities. The combination of the proposed components
allows to realize SHRIs systems that robustly recognize and interpret NL instructions
with respect to the operational environment. The above contributions are reviewed
in Chapters 4 and 5, respectively.

2.3. Dialogue Management in Human-Robot
Interaction

An interaction is, by definition, an exchange of information between two or more
components. In HRI, this exchange may assume different modalities and often
such modalities are jointly modeled to achieve the desired goal ([26, 140, 145, 135]).
However, when this process is performed by using NL as the main information
carrier, the interaction becomes a dialogue or dialogic interaction. For this reason,
Dialogue Management is another essential task that any SHRI system is expected
to perform.

Dialogue Management in Robotics has been mostly applied in a task-based
setting, in contrast with open-domain one. The difference is that while in the former
the dialogue is used to accomplish a specific task, in the latter dialogue does not
have any particular goal, and interaction proceeds without any objective, nor a
pre-defined scheme. Task-based dialogic interactions have been adopted to clarify
and resolve miscommunication ([70, 71, 111, 112]) or clarify persisting ambiguities
of the language ([108, 162]).

Other schemes of dialogic interactions, closer to the one presented in the scenario
of Section 1.1, are used in the context of the Symbiotic Autonomy paradigm, which
this thesis refers to. In this case, dialogue is adopted to teach robots how to acquire
knowledge about the operating environment [89, 95, 130, 187], or how to accomplish
a given task, such as giving a tour [142], delivering objects [64], or manipulating
them [66]. The underlying idea is that, by leveraging the humans’ feedbacks through
dialogic interaction, the robot will be able to fill the missing information.

In situated scenarios, some works investigated the problem of incrementally
enhancing the interaction experience as the dialogue proceeds. This is often achieved
by relying on the context provided by the dialogue history ([155]) or by the operational
environment Garoufi and Koller [62]. More generally, in [89], the authors present a
probabilistic approach to learn new referring expressions for robot primitives and
physical locations in a map, by exploiting the dialogue with the user. The problem
of Referring Expression Generation (REG) has also been tackled by Fang et al. [47]
and further refined in [48]. They developed two collaborative models for REG. Both
models generate multiple small expressions that lead to the target object with the
goal of minimizing the collaborative effort. The problem of tackling the vocabulary in
conversational systems has been addressed by [132]. They propose approaches that
incorporate user language behavior, domain knowledge, and conversation context in
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word acquisition, evaluating such methods in the context of situated dialogue in a
virtual world.

This thesis proposes a dialogic framework that resembles all the above ideas
and makes several contributions with respect to the presented literature. First, the
interactive system is designed for the acquisition of semantic attributes of objects
populating the environment and is able to cope with the situations depicted in the
scenario presented in Section 1.1. In fact, in order to acquire visual information of
the objects, the framework relies on an incremental visual classifier that does not
need (i) to be trained up front, and (ii) a full specification of the objects composing
the environment. These features allow exploiting the contextual information (i.e.,
RGB-D images of the targeted instances) to automatically recognize unseen objects
and support a quick acquisition of the semantic map. Then, the proposed Dialogue
Manager (DM) for the teaching task is entirely data-driven, enabling the deployment
of the system in heterogeneous environments, and supporting interactions with
people speaking different languages. Moreover, the dialogue policy can be acquired
through a very small set of dialogue examples, enabling the deployment of this
system in a long-term mapping scenario. This contribution will be discussed in
Chapter 6.

2.4. Semantic Maps and Robot Perception
NL interactions take a specific nature when applied to Robotics: situated linguistic
interactions are context-aware as both user and robot access and make references to
the environment (e.g., perceived entities, their semantic properties, . . . ). Hence, a
meaningful representation of the contextual environment is thus needed to connect
the real world to the robot reasoning capabilities.

This section describes how to properly represent the contextual knowledge of the
operational environment through Semantic Maps, required for supporting situated
HRIs addressed in this thesis (Chapter 5). In fact, despite the great interest in
designing formalisms and algorithms for building such representations, in this thesis
this resource is used just as the source of information to enable linguistic inferences.

More formally, in line with [29], a Semantic Map is defined as the triple:

SM = 〈R,M,P〉 (2.1)

where:

• R is the global reference frame in which all the elements of the Semantic Map
are expressed;

• M is a set of geometrical elements obtained as raw sensor data expressed in
the reference frame R and describing spatial information in a mathematical
form;

• P is the class hierarchy, a set of domain-dependent facts/predicates providing
a semantically sound abstraction of the elements inM.

P is modeled as a (Monotonic) Inheritance Network. It is worth emphasizing
that we do not require that the knowledge acquired through perception is fully
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Figure 2.1. Sketch of the knowledge contained into a Semantic Map

consistent with the taxonomy of classes, as the Semantic Map is only used to support
the linguistic processes addressed in this thesis. Hence, P is in turn decomposed
into two layers:

P = 〈PDK,PPK〉 (2.2)

where:

• the Domain Knowledge PDK is a conceptual knowledge base representing a
hierarchy of classes, including their properties and relations, a priori asserted
to be representative of any environment; it might be considered an intentional
description of the robot’s operation domain, while

• the Perception Knowledge PPK collects entities and properties specific to the
targeted environment and represents the extensional knowledge, acquired by
the robot.

The resulting structure of P is shown in Figure 2.1, highlighting both PDK and
PPK.

Domain Knowledge The Domain Knowledge provides the terminology (TBox)
of the Semantic Map. It allows to define and structure the knowledge shared by
different environments in the same domain. In particular, the Domain Knowledge
proposed here (Figure 2.1, upper part) aims at modeling the hierarchy of classes,
related to a domestic environment, and the domain-dependent semantic attributes.2

The hierarchy of classes of the PDK is modeled through is-a, e.g., is-a(Cup,
Container), and three specific properties: Contain-ability, Naming and Position.

2The attributes are assumed to be part of the Domain Knowledge PDK.
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Contain-ability defines that all the elements of a given class might potentially contain
something. Naming provides a set of words used to refer to a class. Conversely,
Position is a property that is instantiated only whenever there exists an entity of
the targeted class. In fact, it determines the position of the entity within the grid
map of the environment. The following predicates are used to characterize PDK:

• is-contain-able(C,t) denotes that the Contain-ability property holds for
all the objects of the class C, e.g., is-contain-able(Cup,t);

• naming(C,N) defining N as the naming set, i.e., words that can be used to refer
to the class C, e.g., naming(Table,{table, desk }).

The Contain-able property is modeled by relying upon a Closed World Assumption,
so that whenever the property is not defined for a class, it is assumed to be false,
e.g., is-contain-able(Keyboard,f).

It is worth noting that, for each class C, its naming can be defined in different
modalities: it can be acquired through dialogic interaction, by relying on the user’s
preferred naming convention, extracted automatically from lexical resources or
defined a priori by a knowledge engineer. In this setting, alternative naming has
been provided by the combined analysis of models of DS (see Appendix A.1.3) and
Lexical Databases (e.g., WordNet), and validated by a knowledge engineer.

Perception Knowledge The Perception Knowledge (Figure 2.1, lower part) is
the ABox of the Semantic Map. It represents the actual configuration of the current
world. Hence, it is composed of elements that are actually present in the environment
and perceived by the robot through its sensors.
PPK is defined through instance-of(e,C), stating that the entity e is an entity

of the class C and inherits all the properties associated to C. Moreover, whenever
a new entity is included into the Semantic Map, its corresponding Position must
be instantiated. To this end, position(e,x,y) represents the value of the Position
property for a given entity e within the grid map, in terms of (x,y) coordinates.
Moreover, on top of the Semantic Map, the function d(e1, e2) allows to return
the Euclidean distance among the entities e1 and e2. This value is essential
to determine spatial properties of objects, e.g, whether two entities are far or
near into the environment. For example, given two entities instance-of(p1,Cup)
and instance-of(k1,Keyboard), whose positions are position(p1,2.0,5.0) and
position(k1,4.0,1.0) respectively, their Euclidean distance will be d(p1, k1) =
4.47.

The above formalization of the Semantic Map is essential to effectively shape the
contextual information used within the linguistic processes addressed in Chapter 5.

2.5. The Symbiotic Autonomy Paradigm
Home environments constitute the main target location where to deploy robots,
which are expected to help humans in completing their tasks. However, modern
robots do not meet yet user’s expectations in terms of both knowledge and skills.
To this end, an increasing number of researchers are promoting HRI as a way
to enable the robot to (i) understand the environment they are moving into and
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(ii) accomplish tasks that would be otherwise unachievable. This field of research
has been called Symbiotic Autonomy. Symbiotic Autonomy [139] or Symbiotic
Robotics [38] is a general philosophy adopted for robot design. Under this principle,
robots are not seen anymore as fully autonomous, solitary machines working in a
static and unknown environment. Instead, they are seen as pervasive robotic systems
working in symbiosis with people and their environments. Researchers have started
to explicitly represent inside the robots their own limitations, in order to decide
when to exploit human help to overcome their inabilities. Due to the nature of
such an approach, Symbiotic Autonomy heavily relies on HRI for task execution. A
straightforward example is when Roy asks Daniele and Anna’s help in building the
structured representation of the environment it needs in order to properly operate in
its world. In fact, among others, HAM is an interesting and emerging task obeying
such a paradigm, where the user helps the robot in building the Semantic Map. This
task is detailed hereafter.

2.5.1. Human Augmented (Semantic) Mapping

In order to enable a robot to execute complex tasks and understand humans,
environmental information needs to be semantically labeled. Semantic Mapping is
the process of constructing the so-called Semantic Map (see Section 2.4), a synthetic
representation of the environment that associates symbols to objects and locations
of the world, along with semantic attachments useful to enable inferences on the
targeted world. Once such a representation has been acquired, the robot will be able
to execute commands like “take the mug in the kitchen”, without being tele-operated
by the user and without the user’s help in specifying the target position in terms of
coordinates.

The problem of formalizing the semantic knowledge and generate semantic maps
has been the focus of several works [77, 98].

A Semantic Map can be built by relying on hand-crafted ontologies and using
traditional Artificial Intelligence (AI) reasoning techniques, unable to catch uncer-
tainty inherently connected with semantic information coming from robot sensory
system [60, 127]. The resulting map will be a static representation of the expert’s
perception of the world, preventing an effective adaptation to the end-user.

Other techniques [28, 121, 181] explore Semantic Mapping as a process where the
purely automatic interpretation of perceptual outcomes is exploited to semantically
enrich a geometric map. In this setting, no human effort is required and the process
is performed completely autonomously. On the other hand, a detailed structure of
the semantic properties is hard to acquire, some useful semantic information could
be lost, and information cannot be gained through interaction.

Few approaches consider the human as part of the loop, by exploiting interactions
in a human-robot collaboration setting [67, 151]; this process is often known as
Human Augmented Mapping (HAM). In this case, the user is seen as an instructor
(or tutor), that helps the robot (or learner) to acquire the required knowledge about
the environment. In the range of HAM, it is clear that HRI acquires a special
interest. In this framework, humans are seen as sources of information that the robot
can interrogate to acquire novel knowledge. For example, the work by Zender et al.
[187] proposes a system which is able to create conceptual representations of indoor
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environments. They consider a robotic platform which owns a built-in knowledge. In
this case, the user role is to support the robot in place labeling. Conversely, in [130],
a multi-layered semantic mapping algorithm is presented. The algorithm combines
information about the presence of objects and semantic properties related to space,
such as room size, shape, and appearance. Whenever a user input is provided, it is
combined as additional property about existing objects into the system. In the work
by Nieto-Granda et al. [123], spatial regions are associated with semantic labels.
The user is considered an instructor which helps the robot in selecting the correct
labels.

More complex and advanced forms of human-robot collaboration are considered
in a few works. The semantic map is built through a complete collaboration
between human and robot. In fact, this interaction aims at objects recognition and
positioning, rather than a simple place categorization and labeling. Such interactions
are to some extent more complex and require advanced methods for natural language
understanding. In fact, these systems are supposed to work even when non-expert and
untrained users are considered. In this respect, multi-modal interaction represents
an ideal communication means, as it able to deal with information of a different
nature. For example, in [95] a system that aims at improving the mapping process by
clarification dialogues between human and robot using natural language is introduced.

Following the view that considers the human operator as a fundamental source
that the robot can query to acquire knowledge, Randelli et al. [133] introduce a
system to generate semantic maps through multi-modal interactions. In this scenario,
they use spoken languages to command the robot, and a vision system to enable the
robot to perceive the objects that the user wants to identify and label. Gemignani
et al. [67] generalize the approach to enable robots to incrementally build a semantic
map of different environments while interacting with different users. Given a rich
semantic map built with the help of the user, the system can perform qualitative
spatial reasoning [65].

This thesis addresses a specific aspect of HAM, by focusing on the problem
of enabling effective interactions during the semantic acquisition process. In fact,
as soon as knowledge is being acquired, the robot should be able to exploit such
information in order to make inferences that allow reducing the number of dialogue
turns required to acquire the new knowledge. This contribution [173] will be discussed
in Chapter 6.
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Chapter 3

The Role of Context in Robot
Behavior Modeling

In this chapter, the novel scenario brought by Symbiotic Autonomy (Section 2.5)
is investigated, by addressing the contextual factors that may influence the
interaction (Figure 3.1). In fact, given the current state of technology, autonomy
significantly varies depending on the environment, on the task to be executed and
on the robot platform itself. For example, as long as they do not feature any
manipulator, robots will not be able to accomplish tasks such as grasping an object,
opening a door or simply pushing a button. As already outlined in Section 1.2.1, to
overcome such limitations, robots may ask for help, and accordingly, humans should
be willing to help robots in achieving their tasks. This is the case of Roy that, in
the scenario of Section 1.1, needs help to build the Semantic Map. The evaluation
of how the robot should behave to successfully receive humans’ help, and in which
context it is better to ask for it, represents thus a novel scenario to be investigated.

This chapter reports and expands the results of a user study presented in [134],
aiming at discovering and characterizing the influencing contextual factors of human
attitude in helping a robot to accomplish its tasks. It is worth emphasizing that all
the contextual factors taken into account are features of the environment that are
observable and perceivable by the robot. The working hypothesis is thus that human
attitude has not a constant value, but it depends on identifiable factors imposed
by human physiology and by the context in which they are operating. The concept
Collaboration Attitude and its systematic quantification are introduced to evaluate
how the response of humans being asked by the robot for help is influenced by
multiple contextual dimensions of the interaction and by what people are doing (i.e.,
ongoing activity). To this end, a first user study focused on the evaluation of the
Collaboration Attitude [134], when specific factors such as Proxemics (i.e., relative
pose of the interactive partners), Gender and Height of the experimenters and
Operational Environment of the interactions are not constant. The data collected in
this first experiment revealed that while Proxemics settings, Gender and (partially)
Height play a key role in influencing the Collaboration Attitude of experimenters,
the Operational Environment of the interaction, characterized by the location where
the interaction takes place does not seem to be relevant. Hence, a second user
study investigates the notion of Activity in which the human is involved, when the



26 3. The Role of Context in Robot Behavior Modeling

Hi Roy!
010
1011
1100

Language 
Modeling
• Language Grounding
• Command 

Interpretation
Behavior 
Modeling
• Collaboration 

Attitude
• Social Behavior

Dialogue 
Modeling
• Task-based 

dialogues
• Semantic 

attributes 
acquisition

Speech Modeling
• Speech re-ranking
• Command 

Recognition

Context
• Environment characteristics
• Domain
• Semantic Map
• Perception

Figure 3.1. The behavior of the robot must be designed according to the environmental
conditions.

interaction is triggered by the robot. To this end, rather than considering the context
in which the interaction is carried out, we focused on studying the type of activity
in which the user is involved, when (s)he is interrupted. This is a first step towards
designing robots that are able to efficiently exploit their surroundings to improve
their behavior.

The remainder of the chapter is organized as follows. Section 3.1 frames the
work within the literature. Section 3.2 provides a formalization of Collaboration
Attitude, defining our working hypotheses. Section 3.3 presents our system and the
setup of the experiments. In Section 3.4, we report the experimental results of the
first user study, while in Section 3.5 the empirical evidence of the second user study
is presented. In Section 3.6, the results are discussed and, finally, in Section 3.7 we
draw some conclusions and report the contributions of the chapter.

3.1. Related Work

Symbiotic Autonomy [139], or Symbiotic Robotics [38], describes a new paradigm
in the collaboration between humans and robots, which is defined as a symbiosis
between human and robot to enable a better coexistence of both. Several works in
literature investigated how to enable such a cooperation among humans and robots.
For instance, in [55] the authors study how to adapt robot behaviors to human
preferences, while in [124] such a problem is faced by analyzing human responses to
a robot offering domestic services. Differently from these works, where Collaboration
Attitude is kept stable during the experiments, we assume that the Collaboration
Attitude has not a constant value and depends on many factors such as general user
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attitudes, human comfort and also on the type of activity that involves the user at
the moment of the interaction.

Several user studies try to formalize a baseline to establish robot behaviors that
guarantee a proper level of comfort during human-robot interactions. For example,
in [86, 122] the authors find the best setting for enabling socially acceptable behaviors
in handing-over objects and in properly gazing at the interactive partner. In [159], a
user study is conducted to compare human-robot interactions, that involve users
with a different personality, gender, height, and pet ownership. Similarly, in [118]
the robot autonomously estimates the comfort-level of the operators, by comparing
gaze orientation and physical distances in order to adapt its behaviors to specific
participants; [177] represent the interactions as fuzzy-rules that can be updated
online by an external operator. However, none of the aforementioned studies assumes
the perspective of the robot taking the initiative towards the user. In fact, while in
these studies the focus is to shape the robot behavior in response to a human request,
here we aimed at enabling the robot to interrupt users in order to evaluate which
are the behavioral and contextual features maximizing their Collaboration Attitude.
More related to our study, [139] and [138] present a study about the behavior of a
robot that needs help in the context of Symbiotic Autonomy. Even though in both
scenarios the robot is also allowed to query humans, they do not analyze factors that
may influence humans attitude to collaborate. Thus, no quantitative formalization
and evaluation of the Collaboration Attitude are provided.

Summarizing, most of the works in literature aimed at determining the best
configuration for a robot, that has to carry out a task assigned by a user. Under
this perspective, the goal is to minimize the level of discomfort that can be caused.
The main difference between this work and those reported in the literature lies in
the premises of the task, that is here characterized by a robot asking for help and
a human that is supposed to support it. In fact, the focus here is on evaluating
the Collaboration Attitude of the subjects (proactive behavior), rather than their
preferences during a Human-Robot Interaction (passive behavior) – as in [158]. Hence,
from this different perspective, we want to both minimize the level of discomfort
and determine the best setting for robots that approach humans and ask for help.

According to a thorough review of the literature, this research is the first present-
ing an analysis of the Collaboration Attitude and that studies its enabling factors
with the goal to allow for more natural human-robot interactions.

3.2. A Study on Collaboration Attitude in Symbiotic
Autonomy

In order to study the collaborative inclination of humans towards robots, a quan-
titative measure that captures the concept of Collaboration Attitude needs to be
defined. To this end, the Collaboration Attitude has been modeled as an N-point
Likert scale as follows:

Definition 3.1 (Collaboration Attitude). The Collaboration Attitude measures
the attitude of humans towards the requests for help of the robot in a Symbiotic
Autonomy framework. Formally, it is quantified according to metrics defined on a
scale of N points, where N is the number of tasks that the human is requested to
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accomplish. Precisely, the Collaboration Attitude assumes values in [0, . . . , N − 1],
where 0 represents the lowest level of collaboration, i.e., the human is not willing to
help at all, while N − 1 represents the highest one, i.e., the human is willing to help
the robot in all the tasks.

The working hypotheses of the two user studies are formalized in the following.

User Study 1: Proxemics, Gender and Context

In this user study, the robot asks people for help in different Operational Environ-
ments (namely, Relaxing and Working), with different Proxemics settings (namely,
Intimate, Personal and Social), and balancing the experimenters on their Gender
and Height. The analysis of such factors generates a model of interaction that
defines: (i) whether they actually influence the Collaboration Attitude, and (ii) the
values that maximize it. Eventually, such a model may be used to shape the proper
social behavior of robots asking for help, depending on the current working context.
Operationally, the following four hypotheses constitute the core of this user study.

Hypothesis 1. Collaboration Attitude is subject to different Proxemics settings.

It is well known that among humans and robots, Proxemics has a key role in the
interaction. Therefore, experiments aim at highlighting the importance of respecting
the personal space in social interactions, even in the case where the interactive
partner is a robot. Specifically, the aim is to estimate whether different settings of
Proxemics might vary the Collaboration Attitude that the human shows, ranging
from an intimate distance to a social one.

Hypothesis 2. Collaboration Attitude is subject to the gender of the human.

Humans’ physical and social characteristics affect how they behave in different
situations. Gender is one of the major features to be considered. Such a factor is
usually considered in Human-Robot Interaction (HRI) studies, as males and females
show different responses to equal stimuli.

Hypothesis 3. Collaboration Attitude is subject to the height of the human.

Robot appearance constitutes a key factor to be investigated when studying
humans response to robot behaviors. The intuition is that shorter people perceive
the robot differently than taller people and their Collaboration Attitude varies
depending on such a perception.

Hypothesis 4. Collaboration Attitude is subject to different operational environ-
ment.

The operational environment of the interaction plays a central part in social
interactions. Humans behave differently, depending on where they are and the
contexts they are in. Consequently, a robot needs to consider these social elements.
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User Study 2: Human Activity

In this second user study, a robot interrupts people in order to ask for help, ap-
proaching people that are involved in different activities. Hence, the operational
hypothesis is the following.

Hypothesis 5. Collaboration Attitude is subject to different human activities.

The activity in which the person is involved when the robot asks for help affects
the level of collaboration towards the human. Specifically, users are meant to be in a
Standing activity, if they stand at a location or are walking – for example, whenever
they are going to a meeting or attending a class, or equivalently if they are having a
coffee. Conversely, users are in the Sitting activity, instead, if they are sitting in the
open areas, for example taking a break, having lunch or studying.

3.3. Method
The degree of Collaboration Attitude in changes to the dependent factors has been
analyzed through two subsequent user studies. However, the subjects’ selection
policy, apparatus, procedure and questionnaire are essentially the same. In fact,
for each user study, different runs of the same experiment have been executed by
interrupting users in different activities and asking them to confirm the activity in
order to discard outliers. This section introduces the subject population, the tools
that supported the execution of the user study, the procedure of the experiment and
the questionnaire.

3.3.1. Subjects
All the experiments have been conducted in the Department Computer, Control, and
Management Engineering at Sapienza University of Rome, in different areas of the
campus. For example, in the first user study, the Relaxing environment corresponds
to the area in front of the vending machines, where people take a break from their
activities, while in the Working environment the experiments took place in the
corridor facing the offices. In the second user study, all the experiments have been
performed in the department courtyard. Due to the nature of the user studies, the
users have been randomly selected and approached, drawing from a set of students
with homogeneous characteristics, all of them between 20 and 30 years old (i.e., 78
participants for User Study 1, 206 for User Study 2). Moreover, the experiment is
completed in a between group design, so that every user participated only once and
the data collected is not biased by repetitions of the experiments by the same user.
Participants have not been compensated, nor have they provided any consensus for
taking part in the experiment. This choice has been necessary to prevent possible
bias in the results of the experiments.

3.3.2. Apparatus
In both user studies, the deployed robot is the same modified version of the TurtleBot
Robot (see Figure 3.2). While the base remains unaltered, the structure on top of it
has been customized, in order to make the robot taller with respect to the standard
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Figure 3.2. Modified TurtleBot robot. The platform deployed is higher than the standard
version, and features a tablet which is used to carry out interactions with users.

version. In fact, it is 98 cm high and it features a tablet on top as an interface for
spoken interactions. We allow users to have short-term dialogues with the robot, to
support the estimation of the attitude of the human to help the robot in performing
its tasks. The short-term dialogue system is composed of two main modules: (i)
an Automatic Speech Recognition (ASR), that processes the acoustic signal of the
users’ speech and generates a set of possible transcriptions; (ii) a Dialogue Manager
(DM) that manages the dialogic interaction. The ASR module has been realized
through the Google Speech APIs, available within the Android environment, in an
ad-hoc mobile application. The app is also in charge of managing the questionnaire
presented to the user at the end of the interaction, through a touch-based Graphical
User Interface (GUI). The dialogue flow is managed through an Artificial Intelligence
Markup Language (AIML) Knowledge Base (KB).

3.3.3. Procedure

We conducted our studies both in closed and open areas, where the heterogeneity of
both environment and population gives the opportunity to collect data for each value
of the considered factors. The whole experiment is conducted in a Wizard-of-Oz
fashion [136] and includes a predefined set of four phases, namely Approach, Dialogue,
Questionnaire and Homing. During the Approach phase, the robot approaches the
user that is not aware of being involved in the study until the questionnaire is
displayed. Given the purpose of the study, only this phase slightly differs depending
on the factors and their value. In fact, once the next user is selected, the robot notifies
its presence and seeks for help. The robot asks the experimenter to keep his/her
position. Afterward, the robot approaches the user within one of the Proxemics
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My batteries are 
running low. Can 
you please plug the 

power cable?

Once I will be fully
charged, would you
unplug my power 

cable?

And then, would
you help me to get

off the stairs?

and if I need it, 
would you escort 
me to the Ph.D. 
room upstairs?

yes: 75

no: 3

CA: 0 CA: 1 CA: 2 CA: 3 CA: 4

Dialogue Questionnaire

no: 27 no: 27 no: 10

yes: 48 yes: 21

yes: 4

Figure 3.3. Questionnaire used in the first user study to evaluate the Collaboration
Attitude, showing the numbers of users for the two choices (i.e., yes or no), at each stage
of the questionnaire.

settings, without varying the orientation of the robot during the experiments, as
other works [86, 164] focused on the relative orientation of the robot with respect
to the user. Once the user attention is gained, the Dialogue phase is triggered and
the robot asks to be helped in a particular task. After this short interaction, the
robot displays the Questionnaire on the table aiming at completing the evaluation
of Collaboration Attitude and collecting users’ information. Once the questionnaire
has been completely filled in, the Homing phase is executed, where the robot thanks
the user and is guided towards its original position. It is worth emphasizing that
the chosen characterizations of Operational Environment and Activity are done by
taking into account the actual abilities of the robot perception.

3.3.4. Questionnaire

The data have been collected by asking the user to fill in a questionnaire that the
robot displays on the tablet. The questionnaire is divided into two sections aiming
at (i) quantifying the Collaboration Attitude, and (ii) collecting information about
the user. Specifically, we characterize users by gathering information about gender,
height, and acquaintance towards robotics. The Collaboration Attitude is mapped
into a 5-point scale, measuring the number of positive responses of the experimenters
to the robot requests, according to Definition 3.1. Hence, if we consider also the
initial request (in the Dialogue phase), this variable takes values in {0, ..., 4}, where
0 is the case where the human is not willing to help the robot in any task and
4 the opposite situation. Figure 3.3 and Figure 3.4 show the requests posed
to the experimenters. While the first request is part of the dialogic interaction,
the remaining three are both uttered by the robot and displayed as part of the
questionnaire. The numbers on each edge refer to the occurrences of a particular
answer of both the user studies, i.e., yes or no. In particular, arcs labeled with no
represent users giving up in helping the robot at a particular Collaboration Attitude
request, while arcs labeled with yes count users that advanced through the different
questions. For example, in the first user study (Figure 3.3), the 3 users neglecting
the initial request achieved a Collaboration Attitude of 0, while in the second user
study (Figure 3.4) the same level of Collaboration Attitude has been achieved by
31 users. Conversely, the users that satisfied all the robot requests and obtained a
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My batteries are 
running low. Can 
you please plug the 

power cable?

Once I will be fully
charged, would you
unplug my power 

cable?

And then, would
you help me to get

off the stairs?

and if I need it, 
would you escort 
me to the Ph.D. 
room upstairs?

yes: 175

no: 31

CA: 0 CA: 1 CA: 2 CA: 3 CA: 4

Dialogue Questionnaire

no: 39 no: 39 no: 16

yes: 136 yes: 97

yes: 81

Figure 3.4. Questionnaire used in the second user study to evaluate the Collaboration
Attitude, showing the numbers of users for the two choices (i.e., yes or no), at each stage
of the questionnaire.

Collaboration Attitude score of 4 were 4 and 81, respectively. As one might expect,
the engagement decreases as the requests become more and more demanding.

3.4. User Study 1: Experimental Results

This section reports the results obtained in the first user study. In Figure 3.5, means
and standard errors of the Collaboration Attitude variable, obtained through a
statistical analysis of the collected data, are plotted.

The Proxemics setting that maximizes the Collaboration Attitude is when the
robot approaches the human with a Personal distance (Figure 3.5(a)). This result is
in line with other user studies conducted in Human-Robot Proxemics [118, 122, 159],
stating that humans’ comfort is maximized within the Personal setting. The Intimate
and Social distances give lower values of Collaboration Attitude.

When looking at the gender of the experimenters (Figure 3.5(b)), the mean of
the Collaboration Attitude obtained by females is strikingly higher than the males’
one. This represents a first indication that females are more inclined to help robots
than males. The study of this factor is interesting, as it is known that males and
females have different social behaviors.

Conversely, Figure 3.5(c) shows statistics of the Collaboration Attitude means
to changes in height of the experimenters. The histograms suggest that shorter
experimenters are more inclined to collaborating with respect to taller ones. However,
this analysis might be influenced by several factors, such as the height of the robot
and the different hight of male and female experimenters.

Despite the Relaxing Operational Environment seems to maximize the collabo-
rative intentions of the experimenters (Figure 3.5(d)), the Collaboration Attitude
is rather stable when different contexts are tested. As a consequence, the Opera-
tional Environment does not appear to be a perturbing contextual factor for the
Collaboration Attitude.

In order to search for significant variations and test the operational hypotheses,
we performed One-Way ANOVA over the different datasets. In Table 3.1, a sketch
of the sample under consideration is shown. The populations of Proxemics and
Operational Environment factors are completely balanced, with a population of 26
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Figure 3.5. Collaboration Attitude means and standard errors of the first user study

Groups Count Sum Avg Var
Intimate 26 37 1.42 0.49
Personal 26 81 3.12 0.83
Social 26 37 1.42 0.41
Male 48 69 1.44 0.59
Female 30 86 2.87 0.95
Taller 1.75m 34 57 1.68 1.13
Shorter 1.75m 44 98 2.23 1.16
Relaxing 39 81 2.08 0.97
Working 39 74 1.9 1.46

Table 3.1. User Study 1: data statistics
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Src of Var SS df MS F p-val F crit
Proxemics

Btw. Groups 49.64 2 24.82 42.95 3.71·10−13 3.12
Wtn. Groups 43.35 75 0.58
Total 92.99 77

Gender
Btw. Groups 37.71 1 37.71 51.84 3.7·10−13 3.967
Wtn. Groups 55.28 76 0.73
Total 92.99 77

Height
Btw. Groups 5.82 1 5.82 5.07 0.027 3.97
Wtn. Groups 87.17 76 1.15
Total 92.99 77

Operational Environment
Btw. Groups 0.63 1 0.63 0.52 0.47 3.97
Wtn. Groups 92.36 76 1.22
Total 92.99 77

Table 3.2. User Study 1: One-Way ANOVA results

Intimate vs. Personal Intimate vs. Social Personal vs Social
df 50 50 50
P(T<=t) two-tail 9.6 · 10−10 1 4.1 · 10−10

Table 3.3. t-Test: Two-Sample Assuming Equal Variances

elements for each Proxemics setting and 39 experimenters for both the Relaxing
and Working groups. Conversely, the samples of the Gender factor are not balanced,
with a majority of males with respect to females, i.e., 62% vs. 38% and a prevalence
of shorter experimenters, i.e., 56% shorter vs. 44% taller.

Table 3.2 shows the ANOVA results by reporting the P-value, the Sum of Squares
(SS), the Degrees of Freedom (df ), the Mean Squares (MS), the ratio of the two mean
squares values (F) and the F critical value (F crit). The Collaboration Attitude
depends on the Proxemics setting chosen for the experiment (p-value < 0.05). In
order to confirm the ANOVA results, we performed a post-hoc test through three
t-tests, aimed at comparing each pair of groups. Table 3.3 shows the result of this
additional analysis. As suggested by the means histogram, in the Personal distance
humans act differently w.r.t. Intimate and Social settings (the two-tailed p values are
lower than 0.05), whereas users seem to behave similarly in their Intimate and Social
spaces. Also Gender and Height seem to be significant factor for the Collaboration
Attitude. In fact, the One-Way ANOVA results allow to reject the null hypothesis
in both cases (p-value < 0.05).
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Figure 3.6. Collaboration Attitude analysis of the second user study

Groups Count Sum Avg Var
Sitting 103 237 2.30 1.54
Standing 103 252 2.45 1.49
Table 3.4. User Study 2: data statistics

3.5. User Study 2: Experimental Results
In this section, the results of the second user study are reported. Again, the collected
data have been analyzed through One-Way ANOVA test. Here the focus is on a
more fine-grained discretization of the Activity that users are performing at the
moment of the interaction.

Figure 3.6(a) shows the number of users grouped with respect to the Collaboration
Attitude value that they achieve and divided according to the two values of the
activity factor. Figure 3.6(b), instead, reports means and standard errors of the
Collaboration Attitude. Interestingly, the plots show that standing users are slightly
more inclined in collaborating with the robot, even though the statistical analysis
(Table 3.5) confirms that the Collaboration Attitude values are firmly stable when
different activities are compared. Thus, the Activity performed by the human does
not appear to be a perturbing contextual factor. The populations for the two
values of the activity factor are balanced as 103 users participated in each of the
configurations.

Table 3.5 reports the ANOVA results by highlighting the p-value, the ratio of

Src of Var SS df MS F p-val F crit
Activity

Btw. Groups 1 1.09 1.09 0.47 0.49 3.89
Wtn. Groups 204 473.13 2.32
Total 205 474.22

Table 3.5. User Study 2: One-Way ANOVA results
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the two mean squares values (F) and the critical value (F crit), the sum of squares
(SS), the degrees of freedom (df) and the mean square (MS) for the given experiment.
Instead, Table 3.4 reports for each of the considered settings, the number of users,
the sum of Collaboration Attitude values, its average and variance.

3.6. Discussion

The aim of this investigation was to identify which contextual factors may influence
the interaction between robot and human in the context of Symbiotic Autonomy,
that is when the robot approaches the human to ask for help. The Collaboration
Attitude has been introduced and defined and we set up two user studies to identify
whether Proxemics, Gender, Height, Operational Environment and Activity have an
influence on it. These factors have been chosen as observable features of the context
in which the interaction takes place.

Not surprisingly, and in line with the findings of several works that address
Proxemics as a key factor in human-robot interaction, Proxemics indeed plays a role.
More specifically, this finding could be explained by two elements: the control that
humans exercise in their Intimate space and the robot size. In fact, the presence
of the robot seems to be not relevant, when the interaction takes place at longer
distances. These results are particularly interesting in the framework of Symbiotic
Autonomy: they suggest that a robot asking for help should approach the user in
his personal space, as this distance seems to be the most comfortable for humans.

The results obtained over the Gender factor are supported by the work in [122].
In their user study, in fact, male users are more diffident and place themselves
significantly further from the robot than females. These results are also confirmed in
the work in [158]. Specifically, they report a considerable difference of the comfort
level within the intimate area when varying the gender of the users. Their results
support that males impose a dominant territory that the robot is violating if it
is positioned in their intimate areas. In Human-Human interactions, manifold
psychological studies address this particular behavior. For example, the difference
in cooperating between males and females has been pointed out in [44], where this
evaluation is made upon the well-known Dictator Game. A further confirmation is
provided by [154], where the gender dimension is analyzed within an experimental
study of team performance. In conclusion, the above results, obtained in the setting
of Symbiotic Autonomy, report that female experimenters show more interest in
exploring a new collaboration with a robotic partner. Therefore, the robot behavior
could be leveraged by allowing the robot to seek for help first by female subjects.

The height of the experimenters is another interesting feature that deserves
a better investigation. In fact, few works consider the height of the robot as a
contextual dependent variable in their controlled studies [159, 177]. However, they
do not state or highlight any empirical result on the influence of relative heights of the
robot and users onto the interaction. Conversely, we noticed an interesting behavior,
when classifying users by their heights. Such a categorization has been made by
considering the average among the subjects’ height of the population under analysis
and the 1.75m value has been chosen as an unbiased discriminant factor. However,
the outcomes of such analysis (Table 3.2) could be influenced by the females which are
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usually shorter than males, and much more inclined to a human-robot collaboration.
In fact, 70% of the female experimenters are shorter than 1.75m, while the remaining
30% are taller than 1.75m. Conversely, the male population is almost completely
balanced. Hence, with the available data, we can clearly establish whether the height
of the experimenters plays a key role in a human-robot collaboration. Hence, this
particular aspect deserves an additional analysis, by increasing the variability and
the size of the sample, as well as the height of the robot.

While this is an interesting confirmation that approaching space and users’
physiology must be carefully considered as contextual factors in designing also
symbiotic robots, the aim was also to understand whether what the user is doing is
also relevant: in other words, whether it is worth trying to characterize the situations
where it is more effective for the robot to ask humans for help. As in the first study,
the focus was on the Operational Environment (Working vs. Relaxing), the initial
hypothesis relied upon the intuition that humans in a relaxing context are more
inclined to a collaborative behavior. However, the results of such an experiment
showed that there are not statistically significant differences when changing the
Operational Environment. This finding could be explained by a strong focus on the
social interaction with other humans in a relaxing domain and it may suggest that
robots are not yet considered social partners. This factor trades off the nature of
the working context, where people are usually busy with their tasks.

As the first user study did not provide a clear answer to the question, we
implemented a second user study trying to provide a better characterization of the
situation in terms of the activity performed by the human (Standing vs Sitting).
However, somewhat unexpectedly, the analysis of the data collected in the experiment
indicates that humans do not show a different attitude depending upon the activity
variable.

As a consequence, it seems that the analysis of the situation where the symbiotic
interaction takes place does not have a significant impact on the design of robots’
behavior when asking humans for help. It is worth remarking that activities have
been determined in accordance with elements that are recognizable through robot
perception capabilities. In other words, we identified activities that the robot will
be able to detect through its own sensors. Such an outcome can have several
justifications addressed in the following. First, the embodiment of the robot prevents
the establishment of an interaction between the robot and the user at the emphatic
level. Second, as a direct consequence of the previous remark, robots are not
yet considered as social partners and their presence within the environment is
still seen as a novelty factor. Finally, humans may consider the robot requests
not plausible as they were expecting to act as operators commanding the robot.
In fact, the way humans interact is strongly related to how the social partner is
considered and perceived (i.e., which capabilities/tasks humans are expecting the
robot is capable to perform and achieve.). This seems to strongly bias interactions
and collaborations [40] and surely needs to be the subject of further investigation.
However, by looking at these findings, it is clear that Collaboration Attitude needs
to be better evaluated, including additional elements that will become available to
the robot as its perception capabilities improve. Discovering new enabling factors
for Collaboration Attitude will help increasing robot’s chances to be considered a
social partner when shaping social behaviors in everyday scenarios spanning from
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guidance in museums to assistance in shopping malls. In fact, as soon as robots will
operate more frequently in human-populated environments, symbiotic autonomy
will play a key role in achieving a productive coexistence and thus, the collaboration
will become essential.

3.7. Contributions
This chapter addressed the attitude of human subjects towards collaboration in the
social perspective adopted by the so-called Symbiotic Autonomy. This specific HRI
scenario, where robots ask humans for help, can become a widespread and practical
approach, provided that robots exhibit proper social behaviors. Hence, the work
presented in this chapter relates to a study on Collaboration Attitude, where we found
out that Collaboration Attitude has not a constant value and depends on different
enabling contextual factors. In particular, Proxemics and Gender seem to have
a strong influence on the users’ attitude towards collaborating, being the Personal
space the area in which humans feel more comfortable towards the collaboration.
Moreover, in line with several psychological studies, we found further confirmations
that females are more inclined to collaborating with a robot. Conversely, the role of
humans’ Height needs a further and more accurate investigation in future research,
as it might be also related to the size of the robot. On the contrary, the Operational
Environment in which the interaction takes place do not seem to impact on the
Collaboration Attitude. Hence, we decided to further analyze Collaboration Attitude
with respect to the Activity users are performing during the interaction. To this
end, two settings, being Standing the case in which users stand at a location or are
walking and Sitting when users are sitting in open areas having lunch or studying.
Experimental campaigns, through a robot deployed in real scenarios, show that users’
attitude towards collaboration does not change depending on the activity they are
performing. Hence, the overall study suggests that, when generating robot social
interactions, the situation where the interaction takes place is less relevant than the
general attitude towards the robot.

Hence, the contributions of this chapter are: (i) the introduction of a systematic
metrics to quantitatively measure the Collaboration Attitude (Definition 3.1), (ii) the
identification of possibly influencing contextual factors (namely, Proxemics, Gender,
Height, Operational Environment and Activity), (iii) the setup of the user study,
that can be reproduced to collect new data on the same or new contextual factors,
(iv) the analysis of the identified factors through a user study

In conclusion, the findings of this chapter suggest that when designing social
behaviors of a robot that operates in the Symbiotic Autonomy paradigm, some
contextual factors deserve a special attention. In fact, they provide a valuable source
of information to design human-acceptable behaviors. Though the study focused
on a small set of contextual factors, when Roy needs help (Section 1.1) in building
the Semantic Map, it should respect the social guidelines provided by this study, in
order to establish an effective HRI and, consequently, maximize the probability of
receiving help. The findings of this chapter are highly related to the ones provided in
Chapter 6. In fact, it shows that the actively perceived environment can be exploited
to improve the generation of Semantic Maps when the user plays the role of tutor.
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Chapter 4

The Role of Context in Speech
Recognition

This chapter presents a re-ranking approach to increase the robustness of an off-
the-shelf free-form Automatic Speech Recognition (ASR) system in the context of
understanding human language in Human-Robot Interaction (HRI) scenarios (see
Section 1.2.2). The usefulness of Roy (Section 1.1) is directly dependent on its ability
to perform the desired tasks. Whenever tasks are assigned through spoken commands,
the understanding of the utterance passes through the correct recognition of the
speech. The idea underlying the proposed approach is that, relying on contextual
knowledge extracted from grammars designed over specific domains, it is possible
to improve the accuracy of the adopted generic ASR (Figure 4.1). In fact, most
of the existing off-the-shelf ASRs are based on very well-performing statistical
methods [78], that enable their adoption in everyday scenarios. Nevertheless, these
tools rely on general-purpose language models and false positives might be generated
in specific scenarios. For example, they may be optimized to transcribe queries for
a search engine, that are characterized by different linguistic constructions with
respect to a command for a robot. However, it is reasonable to expect that domain-
specific scenarios provide knowledge and specific information that can improve
the performance of any off-the-shelf ASR. In this regard, several works proposed
techniques where a hybrid combination of free-form ASRs and grammar-based ASRs
is employed to improve the overall recognition accuracy. This thesis proposes to
adopt a domain-specific grammar to improve the robustness of an ASR system
by relying on a scaling-down strategy. First, some of the grammar constraints
are relaxed, allowing the coverage of shallower linguistic information. Given a
grammar, two lexicons are extracted to recognize (i) the vocabulary of in-domain
robotic actions (ii) the vocabulary of the entities in the environment. For each
lexicon, a specific cost is defined to be inversely proportional to its correctness.
The transcriptions initially receive a cost that is inversely proportional to the rank
provided by the ASR system and, each time one of them is recognized by the grammar
or a lexicon, the corresponding cost decreases. The more promising transcription is
the one minimizing the corresponding final cost. The final decision thus depends
on the combination of all the costs so that, even when none of the transcriptions is
recognized by the complete grammar, their rank still depends on the lexicons. In
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Figure 4.1. Speech recognition can be improved by taking into account domain-dependent
information.

this way, those transcriptions that do not refer to any known actions and/or entities
are accordingly penalized.

The proposed re-ranking strategy (introduced in [167]) has been evaluated
on the Human-Robot Interaction Corpus (HuRIC) [13] a collection of utterances
semantically annotated and paired with the corresponding audio file (HuRIC is part
of the discussion of Chapter 5). This corpus is related with the adopted semantic
grammar as this has been designed by starting from a subset of utterances contained
in HuRIC. Experimental results show that the proposed method is effective in
re-ranking the list of hypothesis of a state-of-the-art ASR system, especially on the
subset of utterances whose transcriptions are not recognized by the grammar, i.e.,
no pruning strategy is applicable.

In the rest of the chapter, Section 4.1 provides an overview of the existing
approaches to improve the quality of ASR systems. Section 4.2 presents the pro-
posed approach and defines individual cost factors. In Section 4.3 an experimental
evaluation of the re-ranking strategy is provided and discussed. Finally, Section 4.4
derives the conclusions and recaps the contributions.

4.1. Related Work

The robustness of ASR in domain-specific settings has been addressed in several works.
In [119], the authors propose a joint model of the speech recognition process and
language understanding task. Such a joint model results in a re-ranking framework
that aims at modeling aspects of the two tasks at the same time. In particular,
re-ranking of n-best list of speech hypotheses generated by one or more ASR engines
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is performed by taking the Natural Language Understanding (NLU) interpretation
of these hypotheses into account. On the contrary, the approach proposed in [15]
aims at demonstrating that perceptual information can be beneficial even to improve
the language understanding capabilities of robots. They formalize such information
through Semantic Maps, that are supposed to synthesize the perception the robot
has of the operational environment.

Regarding the combination of free-form ASR engines and grammar based systems,
in [103] two different ASRs work together sequentially: the first is grammar-based and
it is constrained by the rule definitions, while the second is a free-form ASR, that is
not subject to any constraint. This approach focuses on the acceptance of the results
of the first recognizer. In case of rejection, the second recognizer is activated. In order
to improve the accuracy of such a decision, the authors propose an algorithm that
augments the grammar of the first recognizer with valid paths through the language
model of the second recognizer. In [42], a robust ASR for robotic application is
proposed, aiming at exploiting a combination of a Finite State Grammar (FSG) and
an n-gram based ASR to reduce false positive detections. In particular, a hypothesis
produced by the FSG-based decoder is accepted if it matches some hypotheses
within the n-best list of the n-gram based decoder. This approach is similar to
the one proposed in [76], where a multi-pass decoder is proposed to overcome the
limitations of single ASRs. The FSG is used to produce the most likely hypothesis.
Then, the n-gram decoder produces an n-best list of transcriptions. Finally, if the
best hypothesis of the FSG decoder matches with at least one transcription among
the n-best, then the sentence is accepted. A hybrid language model is proposed
in [105]. It is defined as a combination of an n-gram model, aiming at capturing
local relations between words, and a category-based stochastic context-free grammar,
where words are distributed into categories, aiming at representing the long-term
relations between these categories. In [82], an interpretation grammar is employed to
bootstrap Statistical Language Models (SLMs) for Dialogue Systems. In particular,
this approach is used to generate SLM specific for a dialogue move. The models
obtained in this way can then be used in different states of a dialogue, depending
on some contextual constraints. In [104], n-grams and FSG are integrated in one
decoding process for detecting sentences that can be generated by the FSG. They
start from the assumption that sentences of interest are usually surrounded by carrier
phrases. The n-gram is aimed at detecting those surrounding phrases and the FSG
is activated in the decoding-process whenever start-words of the grammar are found.

All the above approaches can be considered complementary to the one proposed
here. However, the advantages of the presented method are mainly in the simplicity
of the proposed solution and the independence of the resulting work-flow from
the adopted free-form ASR system: the aim is to define a simple yet applicable
methodology that can be usable in every robot.

4.2. Re-Ranking Speech Hypotheses through
Domain-dependent Knowledge

This section reports the proposed approach to select the most correct transcription
among the results proposed by an ASR system. Such a technique relies on the
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semantic grammar proposed in [16]. This grammar is modeled around the task of
interpreting commands for robots expressed in Natural Language (NL) by encoding
(i) the set of allowed actions that the robot can execute, (ii) the set of entities in the
environment that should be considered by the robot and (iii) the set of syntactic
and semantic phenomena that arise in the typical sentences of Service Robotics in
domestic environment.

Hence, consider the example command provided in the scenario of Section 1.1
“take the mug next to the keyboard”. A free-form ASR might produce a rank of
possible transcriptions such as

1. deck the madness the keyboard

2. texmag nexo the keyboard

3. take the mug next to the keyboard

4. deck them all exo the keyboard

5. take them all next to the keyboard

In this case, the correct transcription is ranked as third. In order to choose this
sentence, a cost function is applied to the hypotheses based on (i) the adherence
to the robot grammar, as it describes the typical commands for a robot, (ii) the
recognition of action(s) applicable/known to the robot (as for take) and (iii) the
recognition of entities, like nouns referring to objects recognized/known to the
robot, e.g., mug or keyboard. The cost function decreases along with the constraints
satisfied by the sentence, e.g., the second sentence satisfies (iii), but not (i) and
(ii) (as texmag is not an action); as a consequence, it results into a higher cost
with respect to the third transcription. Before discussing the cost function as a
ASR ranking methodology, the grammatical framework used here is defined, in line
with [16].

4.2.1. Grammar-based SLU for HRI
Robots based on speech recognition grammars usually rely on speech engines whose
grammars are extended according to conceptual primitives, generally referring to
known lexical theories such as Frame Semantics [53] (more details in Chapter 5).
Early steps of understanding language in HRI are based on ASR modules that
derive a parse tree encoding both syntactic and semantic information based on such
theory. Parse trees are based on grammar rules activated during the recognition and
augmented by an instantiation of the corresponding semantic frame, that corresponds
to an action the robot can execute. Compiling the suitable robot command proceeds
by visiting the tree and mapping recognized frames into the final command.

The applied recognition grammar jointly models syntactic and semantic phe-
nomena that characterize the typical sentences of HRI applications in the context
of Service Robotics. It encodes a set of imperative and descriptive commands in a
verb-arguments structure. Each verb is retained as it directly evokes a frame, and
each (syntactic) verb argument corresponds to a semantic argument. The lexicon
of arguments is semantically characterized, as argument fillers are constrained by
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one (or more) semantic types. For example, for the semantic argument Theme of
the Bringing frame, only the type Transportable_objects is allowed. As a
consequence, a subset of words referring to things transportable by the robots, e.g.,
can, mobile phone, bottle is accepted. A subset of the grammar for the Bringing
frame, covering the sentence “bring the book to the table” is reported hereafter:

Bringing → Target Theme Goal | ...

Target → bring | carry | ...

Theme → the Transportable_objects | ...

Transportable_objects → mug | book | bottle | ...

Goal → ...

When building the domain-specific lexicons, we will distinguish between terminals
denoting entities (such as mug, book, bottle that belong to the lexicon of Trans-
portable_objects) from the lexicon of possible actions (such as take, bring or
move characterizing the actions of the frame Bringing) as they will give rise to
different predicates augmented with grammatical constraints. Moreover, transcribed
sentences covered by the grammar, i.e., belonging to the grammar language, are
more likely to correspond to the intended command expressed by the user, and
should be ranked first in the ASR output.

4.2.2. A Grammar-based Cost Model for Accurate ASR Ranking

A first interesting type of constraint is posed by the ASR system itself. In fact,
the rank proposed by an ASR system is usually driven by a variety of linguistic
knowledge in the ASR device. A basic notion of cost can be thus formulated ignoring
the domain of the specific grammar.

Given a spoken utterance v, let H(v) be the corresponding list of hypotheses
produced by the ASR. The size |H(v)| = N corresponds to the number of hypotheses.
Each hypothesis h ∈ H(v) is a pair 〈s, ω(s)〉, where s is the transcription of v, and
ω(s) is a cost attached to s. Let p(s) be its position in the ASR systems ranking.
According to this cost function, the higher is ω(s), the lower the confidence in h
being the correct transcription.

Since many off-the-shelf ASR systems do not provide the confidence score for
each transcription, in order to provide a general solution, only the rank is taken
into account. Let v be a spoken utterance and H(v) the corresponding list of
transcriptions, then, ∀s ∈ H(v) the ranking cost ωrc is defined as follows:

ωrc(s, θ) = p(s) + θ∑
s′∈H(v) p(s′) + θN

(4.1)

where p(s) corresponds to the position (1, . . . , |H(v)|) of s in H(v). Here θ is a
smoothing parameter that enables the tuning of the variability allowed to the final
rank with respect to the initial rank proposed by the ASR system.
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The overall cost assigned to a transcription s depends on the ASR ranking, as
well as on the grammar. Let s ∈ H(v), let ωi be a parametric cost depending on the
grammar G, the overall cost ω(s) can be defined as:

ω(s) = log
(
ωrc(s, θ)

)
+
∑
i

log
(
ωi(s, αi)

)
(4.2)

where the different ωi capture different aspects of the grammar G with scores derived
from the grammatical or lexical criteria. Higher values of ωi correspond to stronger
violations. Moreover, ωrc(s, θ) is the ranking cost as in Equation 4.1, while αi is the
parameter associated to each cost ωi.

This approach investigates three possible cost factors, i.e., i = 1, 2, 3, to enforce
information derived by different grammatical, i.e., domain-dependent, constraints as
follows:

• ωG(s, αG) is the complete-grammar cost that is minimal when the transcription
belongs to the language generated by the grammar G, and maximal otherwise;

• ωA(s, αA) is the actions-dependent cost that is minimal when the transcription
explicitly refers to actions the robot is able to perform, and maximal otherwise;

• ωE(s, αE) is the entities-dependent cost that takes into account the entities
targeted by the commands, and is minimal if they are referred into the
transcription s and maximal otherwise.

These cost factors are detailed hereafter.

Complete-grammar cost. When dealing with the language understanding in
robotics, we might be interested in restricting the user sentences to a set of possible
commands. This is often realized by defining a grammar covering the linguistic
phenomena we want to catch. Moreover, if the grammar is designed to embed also
semantic information as in [16], higher level semantic constraints can be included into
the definition of the grammar. For example, the Bringing action can be applied only
to Transportable_objects; as a consequence, a transcription such as bring me the
fridge is discarded by the grammar if the fridge is not a Transportable_objects.

Let G be a grammar designed for parsing commands for a robot R. Let L(G) be
the language generated by the grammar, i.e., the set of all possible sentences that G
can produce. Then, the complete-grammar cost ωG is computed as

ωG(s, αG) =
{
αG if s ∈ L(G)
1 otherwise

(4.3)

where αG ∈ (0, 1] is a weight that measures the strength of the violation and can
be used to weight the impact of an “out-of-grammar” transcription. Notice that
the weight αG can be either set as a subjective confidence or tuned through a set
of manually validated hypotheses. If αG is set to 1, no grammatical constraint is
applied and the complete grammar cost has no effect.
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Action-dependent cost. Robot specifications enable the construction of the
lexicon of potential actions A, hereafter called LA. Let A be the set of actions
that a robot can perform, e.g., Move, Grasp, Open. For each action a ∈ A, a
corresponding set of lexical entries can be used to linguistically refer to a: we will
denote such a set as L(a) ⊂ LA.

The actions-dependent cost ωA for a transcription s ∈ H(v) is thus given by:

ωA(s, αA) =
∏
∀w∈s

αA(w) (4.4)

where αA(w) is defined as:

αA(w) =
{
αA ∃a ∈ A such that w ∈ L(a)
1 otherwise

(4.5)

αA ∈ (0, 1] is a weight that favors words corresponding to actions that are in the
repertoire of the robot. The weight αA can be either set as a subjective preference
or tuned over a set of manually validated hypotheses. Note that if αA is set to 1, no
actions-dependent constraint is applied and the corresponding cost is not triggered.

Entity-dependent cost. Exploiting environment observations can be beneficial
in interpreting commands. Notice that the objects of the robot’s environment are
more likely to be referred by correct transcriptions rather than by the wrong ones,
as these are usually “out of scope”. Let G be the grammar designed for commands.
Given the set of terminals of G, in the lexicon, LG a specific set of terms is used
to make (explicit) reference to objects of the environment. For each entity e (e.g.,
Movable_Objects such as mug, books, . . . , or Furnitures, such as table or
armchair) the set of nouns used to refer to e in the language L(G) is well defined,
and it is denoted by L(e).

The entities-dependent cost ωE for a transcription s ∈ H(v) is thus given by:

ωE(s, αE) =
∏
∀w∈s

αE(w) (4.6)

where αE(w) is defined as:

αE(w) =
{
αE ∃ entity e such that w ∈ L(e)
1 otherwise

(4.7)

and αE ∈ (0, 1] is a weight that favors words corresponding to entities the robot is
able to recognize in the environment. The weight αE can be either set as a subjective
preference or tuned over a set of manually validated hypotheses. Also αE , when set
to 1, produces no entity dependent constraint and corresponds to a null impact on
the final cost.

4.3. Experimental Evaluations
The grammar employed in these evaluations has been designed in [1], lately improved
in [16], and its definition is compliant to the Speech Recognition Grammar Specifi-
cation [80]. The grammar takes into account 17 frames, each of which is evoked by
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an average of 2.6 lexical units (i.e., verbs). On average, for each frame, 27.9 syntactic
patterns are defined. Entities are clustered in 28 categories, with an average amount
of items per cluster of 11.2 elements. An Actions Lexicon L(a) containing 44 different
verbs has is extracted from the grammar. The Entities Lexicon L(e) is composed of
216 and 97 single and compound words, respectively, with a total amount of 313
entities.

The dataset of the empirical evaluation is the HuRIC corpus (see Section 5.4),
a collection of utterances annotated with semantic predicates and paired with the
corresponding audio file. The HuRIC version used in these experiments is composed
of three different datasets, that display an increasing level of complexity in relation
with the grammar employed. The Grammar Generated dataset (GG) contains
sentences that have been generated by the above speech recognition grammar. The
Speaky for Robot dataset (S4R) has been collected during the Speaky for Robots
project1 and contains sentences for which the grammar has been designed so that
the grammar is supposed to recognize a significant number of utterances. While the
grammar is expected to cover all the sentences in the GG dataset, this may be not
true for the S4R one, as some sentences are characterized by linguistic structures not
considered in the grammar definition. The Robocup dataset (RC) has been collected
during the 2013 edition of the Robocup@Home competition [180] and represents the
most challenging section of the corpus, given its linguistic variability. In fact, even
referring to the same house service robotics, it contains sentences not constrained
by the grammar structure, as, during the acquisition process, speakers were allowed
to say any kind of sentence related to the domain.

The experimental evaluation aimed at measuring the effectiveness of the proposed
approach. To this end, the cost function ω(s) has been used in different settings.
The αi can be used to properly activate/deactivate the costs operating on specific
evidence. In fact, if αi = 1, the corresponding cost is not triggered. However,
whenever a cost is activated, its parameter has been estimated through 5-fold cross
validation (with one fold for testing), as well as the θ smoothing parameter of the
ranking cost ωrc.

Performances have been measured in terms of Precision at 1 (P@1), that is the
percentage of correctly transcribed sentences occupying the first position in the
rank, and Word Error Rate (or WER). All audio files are analyzed through the
official Google ASR APIs [32]. In order to reduce the evaluation bias to ASR errors,
only those commands with an available solution within the 5 input candidates were
retained for the experiments.

4.3.1. Experimental Results
Table 4.1 shows the mean and standard deviation of the P@1 and the WER across
the 5 folds. The results have been obtained by testing our cost function on the
aforementioned HuRIC corpus. The transcriptions have been gathered in January
2016. The sizes of the GG, S4R and RC datasets were of 100, 97 and 112 utterances,
each paired with 5 transcriptions derived from the ASR system. The proposed
approach has been compared, where hypotheses are re-ranked according to our cost
function ω(s), against two different baselines. In the first baseline (ASR BL), the

1http://www.dis.uniroma1.it/~labrococo/?q=node/3

http://www.dis.uniroma1.it/~labrococo/?q=node/3
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GG S4R RC

P@1 WER P@1 WER P@1 WER

ASR BL 74.00 ±6.52 3.66 84.71 ±7.57 2.61 79.55 ±10.66 3.89

Greedy 94.79 ±0.12 4.33 93.58 ±4.43 1.09 79.30 ±7.96 5.00

ωG 90.00 ±3.54 1.13 93.98 ±6.36 0.89 78.64 ±9.59 3.92

ωA 80.00 ±7.07 2.22 82.71 ±10.02 2.85 82.27 ±10.21 3.65

ωE 78.00 ±5.70 2.97 83.66 ±6.04 3.00 83.18 ±11.32 3.19

ωG,A 90.00 ±3.54 1.13 92.93 ±6.63 1.06 80.45 ±11.54 3.79

ωE,G 90.00 ±3.54 1.13 93.98 ±6.36 0.89 82.27 ±10.71 3.23

ωA,E 83.00 ±2.74 1.94 86.72 ±5.42 2.21 83.18 ±10.85 3.71

ωG,A,E 90.00 ±3.54 1.13 92.93 ±6.63 1.06 82.27 ±12.07 3.75
Table 4.1. Results in terms of P@1 and WER

best hypothesis is selected by following the initial guess given by the ASR, i.e., the
transcription ranked in the first position. The second baseline (Greedy) selects the
first transcription, occurring within the list, that belongs to the language generated
by the grammar. Conversely, the row ωG refers to the cost function setting when
αA and αE are set to 1, i.e., just the cost ωG is actually triggered. In general, ωi,j,k
refers to the cost function when the costs ωi, ωj and ωk are considered.

The Greedy approach seems to be effective when the sentences are more con-
strained by the grammar, i.e., it is likely that the correct transcription is recognized
by the grammar. In fact, this approach is able to reach high scores of P@1 in
both GG and S4R datasets, i.e., 94.79 and 93.58, respectively. Moreover, when the
complete-grammar cost is triggered, i.e., ωG, ωG,A and ωG,A,E , we get comparable
results, specially on the S4R dataset, with a relative increment of +10.94%. These
observations do not apply for the RC dataset, where the structures and lexicon of the
sentences are not constrained by the grammar. In fact, the complete-grammar cost
does not seem to provide any actual improvement. Conversely, we observe a drop
in performance when the full constrained grammar is employed, i.e., both Greedy
and ωG. On the other hand, when the actions-dependent and entities-dependent
costs are considered, the best results are obtained. In particular, ωE and ωA,E are
able to outperform both the ASR BL and the grammar constrained approaches.
This behavior seems to depict a sort of scaling-down strategy: when the grammar
does not fully cover the sentence, or it is not available, it is still possible to rely
on simpler, but more effective, information. Nevertheless, even though it does not
perform the best, the strategy where all costs are triggered, i.e., ωG,A,E , seems to be
the most stable across different sentence complexity conditions.

Further experiments have been conducted on the transcription lists employed
in [15]. These have been gathered by relying on the same ASR engine, but almost
two years earlier (May 2014). Hence, a different amount of sentences are employed
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GG S4R RC

P@1 WER P@1 WER P@1 WER

ASR BL 84.18 ±11.53 2.04 85.48 ±6.80 4.61 78.75 ±8.39 5.15

Greedy 94.00 ±5.48 2.36 95.78 ±5.79 0.62 74.96 ±5.33 5.80

ωG 92.00 ±8.37 0.74 92.60 ±5.48 2.09 80.00 ±8.15 4.82

ωA 86.00 ±13.42 1.47 85.48 ±6.80 4.30 82.50 ±6.85 2.69

ωE 84.18 ±11.53 2.04 82.40 ±6.41 3.37 83.75 ±3.42 3.57

ωG,A 92.00 ±8.37 0.74 92.88 ±7.05 1.41 82.50 ±5.23 2.66

ωG,E 92.00 ±8.37 0.74 92.60 ±5.48 2.09 82.50 ±5.23 2.98

ωA,E 86.00 ±13.42 1.47 83.94 ±7.84 3.32 90.00 ±8.39 1.85

ωG,A,E 92.00 ±8.37 0.74 92.88 ±7.05 1.41 83.75 ±3.42 2.66
Table 4.2. Results in terms of P@1 and WER obtained over data used in [15]

in this experiment. In fact, the GG, S4R and RC datasets are composed of 51, 68
and 80 lists, respectively. The results are shown in Table 4.2. A similar trend is
observed, with both Greedy and complete-grammar cost reaching the highest scores
in GG and S4R datasets. Even though the results obtained on these corpora are still
comparable with the ones presented in [15], the interesting behavior observed on the
RC dataset represents the main substantial difference. Even on this dataset, the
trend seems to be the same, with the ωA,E outperforming any other approach with
relative improvements in P@1 up to +20.06%. The trend of ωG,A,E is confirmed
here, making it the best solution as the most stable approach.

4.4. Contributions
This chapter presented a practical approach to increase the robustness of an off-the-
shelf free-form ASR system meant to produce the transcription of robotic commands
in the context of HRI. The approach relies on contextual evidence extracted
from grammars designed over specific domains. In particular, a cost is assigned
to each ASR transcription, that decreases along with the number of constraints
satisfied by the sentence with respect to adopted grammar. Despite the simplicity of
the proposed method, experimental results show that the proposed method allows
to significantly improve a state-of-the-art ASR system over a dataset of spoken
commands for robots.

Hence, the contributions of this chapter are: (i) the introduction of a re-ranking
function to select the most promising transcription of commands uttered in domain-
specific applications, among the ones produced by a generic ASR, (ii) the definition
of contextual evidence extracted from a grammar, designed to parse NL commands,
and (iii) experimental evaluations of the proposed re-ranking function, that highlight
the impact of contextual information with respect to the addressed task.
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It is worth emphasizing that a robust ASR is fundamental for any Spoken Human-
Robot Interaction (SHRI) scenario. In fact, as already explained at the beginning of
the chapter, feeding the NLU system with correct transcriptions is essential for the
successful achievement of the robot’s assigned tasks. Under this perspective, this
chapter provides a simple and robust approach for improving the accuracy of any
generic ASR adopted in situated interactions.
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Chapter 5

The Role of Context in
Language Modeling

This chapter focuses on the problem of interpreting robotic commands expressed
through Natural Language (NL) in situated scenarios (see Section 1.2.2), so that the
produced interpretation coherently mediates among the world, the robotic platform
and the pure linguistic level triggered by a sentence (Figure 5.1). This feature is
essential to properly design robotic platforms that are able to effectively meet the
user’s intent, by resolving diverse language inherent ambiguities, such as when the
Prepositional Phrase (PP) attachment issue modifies both syntax and semantics
of a sentence. Referring to the scenario of Section 1.1, this is a capability that
Roy performs, when it is able to react to the command “take the mug next to the
keyboard”, according to Daniele’s intent and the environment.

In order to accomplish such goal, contextual information extracted from the
structured representation of the environment is directly injected into the learn-
ing/tagging process, thus making the interpretation directly dependent on the
environment. To this end, the interpretation process has been modeled as a cascade
of data-driven processors, based on sequential classifiers. Each step of the cascade
is handled through a Hidden Markov Support Vector Machine (SVMhmm), where
both linguistic and contextual features are injected into the models. The approach
leverages models of Distributional Semantics (DS), to increase the generalization
ability across lexical variations. The proposed approach allows thus to (i) learn the
interpretation function from scratch, relying on a corpus of annotated commands,
(ii) inject grounded information directly within the learning algorithm, integrating
linguistic and contextual knowledge, and (iii) extend the features space as more
specific and rich information is made available.

Experimental evaluations show that, when contextual knowledge is paired with
linguistic evidence, the injection of these dimensions in the interpretation process is
beneficial for the correct interpretation of the real user intent.

This chapter is structured as follows. In Section 5.1, the problem of grounding
NL interpretations in robotic operational environments is discussed in the view of
previous research and achievements in literature. Section 5.2 provides a description of
the overall framework, addressing both resources and techniques used to accomplish
the given task. Results obtained through several experimental evaluations are



52 5. The Role of Context in Language Modeling

Hi Roy!
010
1011
1100

Language 
Modeling
• Language Grounding
• Command 

Interpretation
Behavior 
Modeling
• Collaboration 

Attitude
• Social Behavior

Dialogue 
Modeling
• Task-based 

dialogues
• Semantic 

attributes 
acquisition

Speech Modeling
• Speech re-ranking
• Command 

Recognition

Context
• Environment characteristics
• Domain
• Semantic Map
• Perception

Figure 5.1. Operational context allows to ground human language to the environment.

reported in Section 5.3. In Section 5.4 the resource developed for training/testing
the adopted Machine Learning (ML) techniques is presented, while Section 5.5
provides a description of the adaptive spoken Language Understanding chain For
Robots (LU4R) framework, an off-the-shelf tool that implements the paradigms
described in this chapter. Finally, Section 5.6 reports conclusions and contributions
of the chapter.

5.1. Related Work

The approach proposed in this chapter makes use of grounded features extracted
from a Semantic Map [126] modeling the entities in the environment, as well as
semantic and spatial properties. Such features allow driving the interpretation
process of the actions expressed by vocal commands. The realization of robots that
are able to intelligently interact with users within human-populated environments
requires techniques for linking language to actions and entities into the real world.
Recently the research on this topic received an incredible interest (see, for example,
the workshops on Language Grounding in Interactive Robotics [8, 144]).

Language grounding often requires the combination of the linguistic dimension
and perception. For example, in [161], the authors make a joint use of linguistic and
perceptual information. Their approach leverages active perception so that linguistic
symbols are directly grounded in elements actively perceived. Again, in [106], a
Natural Language Understanding (NLU) system called Lucia is presented, based
on Embodied Construction Grammar within the Soar architecture. Grounding is
performed using knowledge from the grammar itself, from the linguistic context,
from the agent’s perception, and from an ontology of long-term knowledge about
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object categories and properties and actions the agent can perform. However, in the
above works perceptual knowledge never modifies syntactic structures that can be
generated by the parser when they are incorrect. Conversely, the system proposed
here is able to deal with ambiguities at predicate level, allowing for selecting the
interpretation that is mostly coherent with the operational environment.

Similarly to the framework presented in this thesis, the approaches in [84, 162]
aim at grounding language to perception through structured robot world knowledge.
In particular, in [162] the authors deal with the problem of out-of-vocabulary words,
that are unknown to the robot, to refer to objects within the environment; the
meaning of such words are then acquired through dialog. However, it is made use
here of a mechanism based on models of DS [143, 115], while extracting grounded
features through the lexical references contained in the Semantic Map. Hence, in
this approach no further interactions are required, and the acquisition of synonymic
expressions for referring to entities is automatically derived by reading large-scale
document collections.

The problem of grounding semantic roles of a caption to specific areas of the
corresponding video is addressed in [183]. Grounding is performed on both explicit
and implicit roles. Semantic Role Labeling (SRL) follows a sequential tagging
approach, implemented through Conditional Random Field (CRF). The problem is
further stressed in [61], where Gao and colleagues studied a specific sub-category
of the action verbs, namely the result verbs, that are meant to cause a change of
state in the patient referred by the verb itself. In their framework, given a video
and a caption, the aim is to ground different semantic roles of the verb to objects in
the video, relying on the physical causality of verbs (i.e., physical changes that a
verb may arouse within the environment) as features in a CRF model. Similarly, in
[63] the problem of reasoning about an image and a verb is studied. In particular,
the authors aimed at picking the correct sense of the verb that describes the action
depicted into the image. In [23], the authors aim at resolving linguistic ambiguities
of a sentence paired with a video by leveraging sequential labeling. The video paired
with the sentence refers to one of the possible interpretations of the sentence itself.
Even though they make a large use of perceptual information to solve a SRL problem,
their system requires an active perception of the environment through RGB cameras.
Hence, the robot must have the capabilities for observing the environment at the
time the command is uttered. Again, in [4] the authors face the problem of teaching
a robot manipulator how to execute natural language commands by demonstration,
using video/caption pairs as a valuable source of information. Conversely, the
proposed approach relies on a synthetic representation of the environment (see
Section 2.4), acquired through active interaction [67]. It allows the robot to make
inferences over the world it is working into, even though it is not actively and directly
observing the surrounding environment. However, as the perception is injected in
the interpretation process as features for the learning machine, the framework can
be scaled to active perception, whenever vision information can be made available
and encoded into features in real-time.

A different perspective has been addressed in [34], where the highly ambiguous
problem of PP attachment of images’ caption is resolved by leveraging the cor-
responding image. In particular, the authors propose a joint resolution of both
semantic segmentation of the image and prepositional phrase attachment. In [90]
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the authors exploit an RGB-D image and its caption to improve 3D semantic seg-
mentation and co-reference resolution in the sentences. However, while the above
works leverage visual context for the semantic segmentation of images or syntax
disambiguation of captions, a synthetic representation of the context is used here
to resolve semantic ambiguities of the human language, with respect to a situated
interactive scenario. Hence, the proposed approach is able to cope with the correct
semantics of an command that has been uttered in a specific context.

It is worth noting that approaches making joint use of language and perception
have been proposed to model the language grounding problem also when the focus
is on grounded attributes, as in [113, 93, 185]. Although the underlying idea of
these works is similar to the technique presented here, our aim is to produce an
interpretation at the predicate level, that can be in turn grounded in a robotic plan
corresponding to the action expressed in an utterance. Therefore, the findings of
such works can be considered complementary, as while they focus just on grounding
linguistic symbols into entities and attributes, such a process is here leveraged for
linking the whole interpretation to the current world.

To summarize, this work makes the following contributions with respect to the
presented literature.

• The exploited perceptual information is extracted from a synthetic representa-
tion of the environment. This allows the robot to include information about
entities that are not present in the same environment the robot is operating
into.

• The discriminative nature of the proposed learning process allows to scale
the feature space and to include other dimensions without re-structuring the
overall system. Moreover, such property is used to evaluate the contributions
provided by individual features.

• In this framework, perceptual knowledge is made essential to solve ambiguities
at predicate level, thus affecting the syntactic interpretation of sentences
according to dynamic properties of the operational environment.

• The system is robust towards lexical variation and out-of-vocabulary words
and no interaction is required to solve possible lexical ambiguities. This is
achieved through models of DS, used both as features for the tagging process
and as principal component for grounding linguistic symbols to entities of the
environment.

• Since the grounding function is a pre-processing, completely de-coupled step
of the interpretation process, the mechanism is scalable to include further
information that is not currently taken into account.

5.2. Grounded Interpretation of Situated Commands
through Perceived Context

Human language is still one of the most natural vehicle of communication as for
its expressiveness and flexibility: the ability of a robot to correctly interpret users’
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commands is essential for proper Human-Robot Interaction (HRI). An effective
communication in natural language between humans and robots is still challenging
for the different cognitive abilities involved during the interaction. In fact, behind
the simple command

“take the mug next to the keyboard” (5.1)

a number of implicit assumptions should be met in order to enable the robot for
a successful execution of the command. First, the user refers to entities that must
exist into the environment, such as the mug and the keyboard. Moreover, the robot
needs a structured representation of the objects, as well as the ability to detect them.
Finally, mechanisms to map lexical references to the objects must be available, in
order to drive the interpretation process and the execution of a command.

This thesis argues that the interpretation of a command must produce a logic
form through the integrated use of sentence semantics, accounting for linguistic and
contextual constraints. In fact, without any contextual information, the command 5.1
is ambiguous with respect to both syntax and semantics due to the PP attachment
ambiguity ([2, 35]). In the running example 5.1, the PP “next to the keyboard”,
can be attached either to the Noun Phrase (NP) or the Verb Phrase (VP), thus
generating the following different syntactic structures

[VP take [NP the mug [PP next to the keyboard]]] (5.2)

[VP take [NP the mug] [PP next to the keyboard]] (5.3)

that evoke different meanings as well. In fact, due to the high ambiguity of the
“take” word, i.e., it can be noun or verb with different meanings [178], whenever the
syntactic structure of the running command is 5.2, “next to the keyboard” refers to
“the mug”. Hence, the semantics of the command evokes a Taking action, in which
the robot has to take the mug that is placed next to the keyboard. Conversely, if
the syntactic structure is 5.3, “next to the keyboard‘” is attached to the verb phrase,
indicating that the mug is located elsewhere far from the keyboard. In this case, the
interpretation of the command refers to a Bringing action, in which robot has to
bring the mug next to the keyboard, that is the goal of the action.

It is clear that the structured representation of the environment is a discriminating
factor for resolving syntactic/semantic ambiguities of language such as the PP
attachment, as well as for providing the required knowledge in support of language
grounding in a situated scenario.

In conclusion, this thesis fosters an approach for the interpretation of robotic
spoken commands that is consistent with (i) the world (with all the entities composing
it), (ii) the robotic platform (with all its inner representations and capabilities), and
(iii) the linguistic information derived from the user’s utterance.

5.2.1. Knowledge and Language for Robotic Grounded Command
Interpretation

While traditional language understanding systems mostly rely on linguistic informa-
tion contained in texts (i.e., derived only from transcribed words), their application
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Figure 5.2. Layered representation of the knowledge involved in the interpretation of
robotic commands

in HRI depends on a variety of other factors, including the perception of the envi-
ronment. We might categorize these factors into a layered representation as shown
in Figure 5.2. First, the Language Level is the governor of linguistic inferences: it
includes observations (e.g., sequences of transcribed words), as well as the linguistic
assumptions of the speaker; the language level is modeled through frame-like predi-
cates. Similarly, evidence involved by the robot’s perception of the world must be
taken into account. The physical level, i.e., the Real World, is embodied into the
Physical Perception Level: the robot is assumed to have a synthetic image of its
world, where existence and possibly other properties of entities are represented. Such
representation is built by mapping the direct input of robot sensors into geometrical
representations, e.g., Metric Map. These provide a structure suitable for connecting
to the Knowledge Level. Here symbols, encoded into the Perception Level, are used
to refer to real world entities and their properties inside the Domain Level. The
latter comprises active concepts the robot sees, realized in a specific environment,
plus general knowledge it has about the domain. All these information play a
crucial role during linguistic interactions, interplaying each other. The integration
of metric information with notions from the knowledge level provides an augmented
representation of the environment, called Semantic Map [126] (see Section 2.4). In
this map, the existence of real world objects can be associated to lexical information,
in the form of entity names given by a knowledge engineer or uttered by a user, as in
Human Augmented Mapping (HAM) [41, 67]. It is worth noting that the robot itself
is a special entity described at this knowledge level: it does know its constituent
parts as well as its capabilities, that are the actions it is able to perform. To this
end, an additional level is introduced (namely Platform Level), whose information is
instantiated in a knowledge base called Platform Model (PM). The main aim of
such a knowledge base is to enumerate all the actions the robot is able to execute.
While Spoken Language Understanding (SLU) for HRI have been mostly carried
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out over the evidences specific to the linguistic level, e.g., in [33, 114, 12, 19], we
assume that any convincing process should deal with all the aforementioned layers
in an harmonized and coherent way. In fact, all linguistic primitives, including
predicates and semantic arguments, correspond to perceptual counterparts, such as
plans, robot’s actions or entities involved in the underlying events.

In the following, the one of the building blocks of the proposed perceptually
informed framework is introduced, defining the adopted interpretation formalism.

Frame-based Interpretation. A command interpretation system for a robotic
platform must produce interpretations of user utterances. In this thesis, the un-
derstanding process is based on the theory of the Frame Semantics [53]; in this
way, it is possible to give a linguistic and cognitive basis to the interpretations. In
particular, the formalization promoted in the FrameNet [6] project is considered,
where actions expressed in user utterances are modeled as semantic frames. Each
frame represents a micro-theory about a real world situation, e.g., the actions of
Bringing or Motion. Such micro-theories encode all the relevant information
needed for their correct interpretation, represented in FrameNet via the so-called
frame elements, whose role is to specify the participating entities in a frame, e.g.,
the Theme frame element refers to the object that is taken in a Bringing action.
Consider the running example 5.1 “take the mug next to the keyboard” provided in
Section 5.2. Depending on which syntactic structure is triggered by the contextual
environment, this sentence can be intended as a command whose effect is to instruct
a robot that, in order to achieve the task, has to either

1. move towards a mug, and

2. pick it up,

or

1. move towards a mug,

2. pick it up,

3. navigate to the keyboard, and

4. release the mug next to the keyboard.

To this end, a language understanding cascade should produce its FrameNet-
annotated version, that can be

[take]Taking [the mug next to the keyboard]Theme (5.4)

or
[take]Bringing [the mug]Theme [next to the keyboard]Goal (5.5)

extracted coherently with the configuration of the environment.
In the following, the notation used for defining an interpretation in terms of

semantic frames is introduced. It will be useful to support the formal description of
the proposed framework. In this respect, given a sentence s as a sequence of words
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wi, i.e., s = (w1, ..., wl), in this setting an interpretation I(s) in terms of semantic
frames determines a conjunction of predicates as follows:

I(s) =
n∧
i=1

pi (5.6)

where n is the number of predicates evoked by the sentence. Each predicate pi is in
turn represented by the pair

pi = 〈f i, Argi〉 (5.7)
where:

• f i ∈ F is the label of the ith predicate evoked by the sentence, where F is the
set of possible frames as defined in the PM, e.g., Taking, Bringing, . . . , and

• Argi is the set of arguments of the corresponding predicate pi, e.g., [the mug
next to the keyboard]Theme of the interpretation 5.4, while [the mug]Theme and
[next to the keyboard]Goal for the interpretation 5.5.

Every argij ∈ Argi is identified by a triple 〈aij , rij , hij〉 describing:
• the argument span aij defined as subsequences of s, so that the span aij =

(wm, . . . , wn) with 1 ≤ m < n ≤ l, e.g., “the mug next to the keyboard” for 5.4
or “the mug” and “next to the keyboard” for 5.5;

• the role label rij ∈ Ri (or frame element) associated to the current span aij
and drawn from the vocabulary of frame elements Ri defined by FrameNet for
the current frame f i, e.g., the semantic roles Theme or Theme and Goal
associated to the interpretations 5.4 and 5.5, respectively;

• the semantic head hij ∈ aij , as the meaning carrier word wk = h of the frame
argument, with m ≤ k ≤ n, e.g., “mug” for the single argument of interpreta-
tion 5.4 or “mug” and “keyboard” for the arguments of interpretation 5.5.

Together with the arguments, Argi contains also the lexical unit (Lu) that anchors
the predicate pi to the text and is represented here through the same structure of
arguments, e.g., the verb take. The two different interpretations of the running
example 5.1 will be represented through the following structures

I(s) = 〈Taking, {
〈(take),Lu, take〉,
〈(the,mug, next, to, the, keyboard),Theme,mug〉}〉

or
I(s) = 〈Bringing, {

〈(take),Lu, take〉,
〈(the,mug),Theme,mug〉,
〈(next, to, the, keyboard),Goal, keyboard〉}〉

depending on the configuration of the environment.
In conclusion, semantic frames can thus provide a cognitively sound bridge

between the actions expressed in the language and the execution of such actions in
the robot world, in terms of plans and behaviors.



5.2 Grounded Interpretation of Situated Commands through Perceived
Context 59

5.2.2. Grounding: a Side Effect of Linguistic Interpretation and
Context

When interacting with a robot, users make references to the environment. This means
that in order for the robot to execute the requested command s, the corresponding
interpretation I(s) must be grounded: semantic frames provided by I(s) are supposed
to trigger grounded command instances, that can be executed by the robot. Two
steps are required for grounding an instantiated frame in I(s). First, the frame f i
corresponding to predicate pi = 〈f i, Argi〉 ∈ I(s) must be mapped into a behavior.
Then, all the frame arguments argij ∈ Argi must be explicitly associated to their
corresponding actors in the plan. In fact, role labels rij are paired just with the
argument spans aij and semantic heads hij corresponding to frame elements. However,
aij and hij play the role of anchors for the grounding onto the map: each lexical item
can be used to retrieve a corresponding entity in the environment. In this respect,
let EPPK be the set of entities populating the Perception Knowledge PPK (defined
in Section 2.4), collected as:

EPPK = {e | instance-of(e, ·)} (5.8)

Then, for each entity e, its corresponding naming can be gathered from the Domain
Knowledge PDK as follows:

N (e) = {we | instance-of(e, C) ∧ naming(C, N) ∧ we ∈ N} (5.9)

that is: given the entity e and type c, N (e) is composed of all the words in the
naming set N associated to c that is defined into the PDK (see Section 2.4).

The proposed linguistic grounding function Γ : argij×PPK → Gargi
j
is carried out

by estimating to what extent the argument argij matches the naming provided for the
entities in PPK. Hence, Γ(argij ,PPK) produces a set of entities Gargi

j
maximizing the

lexical distance between argij and we ∈ N (e), ordered depending on the real-valued
lexical distance. Such lexical distance g : hij×we → R is indeed estimated as a linear
combination between word embeddings vectors of the semantic head hij (associated
to argij) and the words we [14]. Hence, the set of grounded entities Gargi

j
can be

defined as:

Γ(argij ,PPK)→ Gargi
j

= {e ∈ EPPK | ∃we ∈ N (e) ∧ g(h,we) > τ} (5.10)

where τ is an empirically estimated threshold obeying to application-specific criteria.
The lexical semantic vectors are acquired through corpus analysis, as in paradigms

of DS (see Appendix A.1.3). They allow to control references to elements modeling
synonymy or co-hyponymy, when arguments spans, such as cup, are used to refer to
entities with different names, e.g., a mug. However, depending on how the function g
is modeled, it is possible to inject non-linguistic features that might be meaningful for
the grounding itself. In fact, at the moment only semantic head hij and naming we are
taken into account; hence, g neglects the contribution that, for example, adjectival
modifiers may carry, e.g., the color of an entity can be helpful in disambiguating the
grounded entity, whenever two entities, with different colors, of the same class are
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present into the environment. The maximization of the similarity g between semantic
head and entity naming corresponds to the minimization of the distance between the
corresponding lexical semantic vectors and it can be extensively applied to grounding.
Hence, g measures the confidence associated with individual groundings over the
relevant lexical vectors. Although different settings of g (and therefore of Γ) can be
designed [14], this mechanism is extensively used in this thesis to locate candidate
grounded entities in the Semantic Map and to code them into perceptual features in
the understanding process, hereafter described.

5.2.3. Contextually Informed Interpretation: the Language
Understanding Cascade

The proposed interpretation framework is based on a cascade of statistical classifica-
tion processes, modeled as sequence labeling tasks [17, 166, 170]. The classification
is applied to the entire sentence and is modeled as the Markovian formulation of
a structured Support Vector Machine (SVM) (i.e., SVMhmm proposed in [5]). In
general, this learning algorithm combines a local discriminative model, which esti-
mates the individual observation probabilities of a sequence, with a global generative
approach to retrieve the most likely sequence, i.e., tags that better explain the whole
sequence.

In other words, given an input sequence x = (~x1 . . . ~xl) ∈ X of feature vectors
~x1 . . . ~xl, where x is a sentence and xi ∈ Rn is a feature vector representing a
word, the model predicts a tag sequence y = (y1 . . . yl) ∈ Y+ after learning a
linear discriminant function. Note that labels yi are specifically designed for the
interpretation I(s). In fact, this process is obtained through the cascade of the Frame
Detection and Argument Labeling steps, where the latter is further decomposed in
the Boundary Identification and Argument Classification sub-steps. Each of these is
mapped into a different SVMhmm sequence labeling task.

In the following, the ML approach is first introduced and then its application to
each step of the cascade is addressed.

The Learning Machinery. The aim of a Markovian formulation of SVM is to
make the classification of a word xi dependent on the label assigned to the previous
elements in a history of length k, i.e., xi−k, . . . , xi−1. Given this history, a sequence
of k step-specific labels can be retrieved, in the form yi−k, . . . , yi−1. In order to make
the classification of xi dependent also from the history, the feature vector of xi is
augmented, by introducing a vector of transitions ψtr(yi−k, . . . , yi−1) ∈ Rl: ψtr is a
boolean vector where the dimensions corresponding to the k labels preceding the
target element xi are set to 1. A projection function φ(xi) is defined to consider
both the observations, i.e., ψobs and the transitions ψtr in a history of size k by
concatenating the two representation as follows:

xki = φ(xi; yi−k, . . . , yi−1) = ψobs(xi) || ψtr(yi−k, . . . , yi−1) (5.11)

with xki ∈ Rn+l and ψobs(xi) does not interfere with the original feature space. Notice
that the vector concatenation is here denoted by the symbol ||, and that linear
kernel functions are applied to different types of features, ranging from linguistic to
world-specific features.
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The feature space operated by ψobs is defined by linear combinations of kernels to
integrate independent properties. In fact, through the application of linear kernels,
the space defined by the linear combination is equivalent to the space obtained by
juxtaposing the vectors on which each kernel operates. More formally, assuming
that K is a linear kernel, e.g., the inner product, and being xi, xj two instances,
each composed by two vector representations a and b (i.e., xia , xib , xja , xjb), then
the resulting Kernel K(xi, xj) will be the combination of the contributions given
by Kernels working on the two representations (i.e., Ka(xia , xja) and Kb(xib , xjb),
respectively), that can be approximated through the concatenation of vectors xia ||xib
and xja ||xjb :

K(xi, xj) = Ka(xia , xja) +Kb(xib , xjb) = 〈xia ||xib , xja ||xjb〉 (5.12)

Conversely, ψobs(xi) = xia ||xib .1
At training time, the SVM learning algorithm LibLinear is used [46], and

implemented in Kernel-based Learning Platform (KeLP) [52] in a One-Vs-All
schema over the feature space derived by φ, so that for each yj a linear classi-
fier fj(xki ) = wjφ(xi; yi−k, . . . , yi−1) + bj is learned. The φ function is computed
for each element xi by exploiting the gold label sequences. At classification time,
all possible sequences y ∈ Y+ should be considered in order to determine the best
labeling ŷ = F (x, k), where k is the size of the history used to enrich xi, that is:

ŷ = F (x, k) = arg max
y∈Y+

{
∑

i=1...m
fj(xki )}

= arg max
y∈Y+

{
∑

i=1...m
wjφ(xi; yi−k, . . . , yi−1) + bj}

In order to reduce the computational cost, a Viterbi-like decoding algorithm
(Figure 5.3) is adopted2 to derive the sequence, and thus build the augmented feature
vectors through the φ function. More details about the SVMhmm mathematical
framework provided, see Appendix A.1.1.

In the following, the different steps of the processing cascade are addressed
individually.

Frame Detection. The processing cascade starts with the Frame Detection
(FD) step, whose aim is to find all the frames evoked by the sentence s. It corresponds
to the process of filling the elements pi in I(s), and can be represented as a function
fFD(s, PM,PPK), where s is the sentence, PM is the Platform Model and PPK is
the Perception Knowledge. Assuming s =“take the mug next to the keyboard”, then

fFD(s, PM,PPK) = p1 = 〈Taking, {
〈〈take〉,Lu, take〉,
. . .}〉

1Before concatenating, each vector composing the observation of an instance, i.e., ψobs(xi), is
normalized to have unitary norm, so that each representation equally contributes to the overall
kernel estimation.

2When applying fj(xk
i ) the classification scores are normalized through a softmax function and

probability scores are derived.
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Figure 5.3. Viterbi decoding trellis of the Boundary Identification step (Section 5.2.3), for
the running command “take the mug next to the keyboard”, when the interpretation 5.5 is
evoked. The label set refers to the IOB2 scheme, so that yi ∈ {B, I,O}. Feature vectors
xi are obtained through the φ function. The best labeling y = (O,B, I,B, I, I, I) ∈ Y+

is determined as the sequence maximizing the cumulative probability of individual
predictions.

for interpretation 5.4, while

fFD(s, PM,PPK) = p1 = 〈Bringing, {
〈〈take〉,Lu, take〉,
. . .}〉

for interpretation 5.5.
As already explained, the labeling process depends on linguistic information,

as well as on the information derived from the PM (i.e., actions the robot is able
to execute) and perceptual features extracted from the PPK. In this Markovian
framework, states reflect frame labels, and the decoding proceeds by detecting lexical
units wk to which the proper frame f i is assigned. This association is represented as
a pair 〈wk, f i〉, e.g., take-Taking, take-Bringing. A special null label “_” is used
to express the status of all other words, e.g., the-_ or mug-_.

In the FD phase, each word is represented as a feature vector systematically
defined to be a composition between linguistic, robot-dependent and environmental
observations, as detailed below.

Linguistic features. Linguistic features here include lexical features (such as
the surface or lemma of the current word and its left and right lexical contexts) and
syntactic features (e.g., the Part-Of-Speech (POS)-tag of the current word or the
contextual POS-tag n-grams).

Robot-dependent Features. Information about the robot coming from the
PM are used to represent executable actions: these are mapped into frames through
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their corresponding Lus. The PM thus defines a set of pairing between Lus and
frames, according to which boolean features are used to suggest possibly activated
frames for each word in a sentence. In particular, if wk is a verb, and F k ⊆ F is the
subset of frames that can be evoked by a word wk (according to what stated in the
PM), then, for every frame f i ∈ F k, the corresponding i-th feature of the wk is set
to true.

Perceptual features. In addition, features derived from the operational
context are used in the FD step as they are extracted from the PPK. These
“perception-based” features combine the information derived by the lexical ground-
ing function with the syntactic dependency tree associated with s. In particu-
lar, let vh be a verb. Let n(vh) be the set of nouns governed by the verb vh,
n(vh) = {wk | POS(vh) == vb ∧ POS(wk) == nn ∧ wk is rooted in vh in the
dependency (sub)tree}. Let t(vh) be the set of tokens governed by the verb vh,
t(vh) = {tk | POS(vh) == vb ∧ tk is rooted in vh in the dependency (sub)tree}.
Then the following perceptual features are extracted and associated to each token of
the sentence.

Grounded entities
The number |n(vh)| of nouns governed by vh is added as a feature to the represen-
tation of all the tokens tk ∈ t(vh). Even though this is not properly a perceptual
evidence, its contribution must be considered when paired with another feature,
whose aim is to explicits the number of entities that have been grounded by the
tokens wk ∈ n(vh). This feature is as well added to the representation of all the
tokens tk ∈ t(vh). Formally, its value is defined as the cardinality of the grounded

sets union

∣∣∣∣∣∣ ⋃
∀wk∈argi

j∧wk∈n(vh)
Gargi

j

∣∣∣∣∣∣.
Spatial features

This is probably the key contributing feature among the perceptual ones. In fact,
it tries to capture the spatial configuration of the involved entities populating the
environment, by allowing an active control of the predicate prediction, whenever the
distance between objects is the only discriminating factor. Operationally, ∀wk ∈
argij ∧ wk ∈ n(vh), their corresponding grounding sets Gargi

j
are extracted. Then,

from each Gargi
j
, the most promising candidate entities (i.e., the one maximizing g)

are considered and the average Euclidean spatial distance between them is computed,
by relying on the predicate distance(e1, e2, d). The resulting feature is a discretized
version of the averaged distance (i.e., near/far). Such a discrete value is obtained
by comparing the Euclidean distance d against an empirically evaluated threshold ε.

Boundary Identification. For each identified predicate pi ∈ I(s), the Bound-
ary Identification (BI) step predicts all its arguments argij , by detecting the
corresponding argument span aij and semantic head hij . This process starts filling
the missing elements of each j-th argument argij ∈ Argi. More formally, for a given
sentence s, the ith identified predicate pi, the BI process can be summarized as the
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function fBI(s, pi,PPK) updating the structure of I(s) as follows:

fBI(s, pi,PPK) = p1 = 〈Taking, {
〈〈take〉,Lu, take〉,
〈〈the,mug, next, to, the, keyboard〉,_,mug〉}〉

for interpretation 5.4, or

fBI(s, pi,PPK) = p1 = 〈Bringing, {
〈(take),Lu, take〉,
〈(the,mug),_,mug〉,
〈(next, to, the, keyboard),_, keyboard〉}〉

for interpretation 5.5.
In the proposed Markovian framework, states now reflect argument boundaries

between individual argij ∈ Argi. Following the IOB2 notation, the Begin (B), Internal
(I) or Outer (O) tags are assigned to each token. For example, the result of the BI
over the sentence “take the mug next to the keyboard” would be

O-take B-the I-mug I-next I-to I-the I-keyboard (Interpr. 5.4)

or

O-take B-the I-mug B-next I-to I-the I-keyboard (Interpr. 5.5)

Linguistic features. In this step, the same morpho-syntactic features adopted
for the FD are used together with the frame f i detected in the previous step. For
each token, its lemma, right and left contexts are considered as purely lexical features.
Conversely, the syntactic features used are POS-tag of the current token and left
and right contextual POS-tags n-grams.

Perceptual features. As for the FD step, the following dedicated features
derived from the perceptual knowledge are introduced.

Grounded entities
For each noun wk ∈ argij such that Gargi

j
6= ∅, a boolean feature is set to true. It is

worth reminding that Gargi
j
contains candidate entities referred by argij . Moreover,

for each preposition prepk, given their syntactic dependent wdepk ∈ argij , a boolean
feature is set to true if and only if Gargi

j
6= ∅. Again, for each preposition prepk, the

number of nouns wk ∈ argij on the left and on the right of prepk, whose Gargi
j
6= ∅,

are also used as features in its corresponding feature vector.

Spatial features
For each preposition prepk, we also retrieve its syntactic governor in the tree
wgovf ∈ argij and measure the average Euclidean distance in PPK between entities in
Gdep ∪ Ggov. A well as for the FD feature, if this score is under a given threshold ε,
the spatial feature is set to near, replacing the default value of far.
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Argument Classification. In the Argument Classification (AC) step, for
each the frame pi = 〈f i, Argi〉 ∈ I(s), all the argij ∈ Argi are labeled according to
their semantic role rij ∈ argij , e.g., Theme to the argument the mug next to the
keyboard, or Theme and Goal to arguments the mug and next to the keyboard,
respectively. In fact, in this step states correspond to role labels. Though some
of the ideas have been already published in [17], the main novelty of this thesis is
that classification here exploits both linguistic features and semantic information
about the application domain extracted from the PDK. This is possible thanks to
the proposed framework, which allows to inject new features as they are identified
as possibly contributing. Consequently, AC predictions will reflect also information
extracted from the PDK.

Given a predicate pi = 〈f i, Argi〉 and the class hierarchy P , the AC function can
thus be written as fAC(s, pi,P,DS) and produces the following complete structure

fAC(s, pi,P,DS) = p1 = 〈Taking, {
〈〈take〉,Lu, take〉,
〈〈the,mug, next, to, the, keyboard〉,Theme,mug〉}〉

for interpretation 5.4, or

fAC(s, pi,P,DS) = p1 = 〈Bringing, {
〈(take),Lu, take〉,
〈(the,mug),Theme,mug〉,
〈(next, to, the, keyboard),Goal, keyboard〉}〉

for interpretation 5.5.

Linguistic features. Again, the same morpho-syntactic features adopted in
both FD and BI are obtained from s, together with the frame pi and the IOB2 tags
coming from the previous stages. For each token, its lemma, right and left contexts
are considered as purely lexical features. The POS-tag of the current token and left
and right contextual POS-tag n-grams are used as the syntactic features.

In addition, a model of DS is applied to generalize the argument semantic head
hij of each argument argij : the distributional (vector) representation for hij is thus
introduced to extend the feature vector corresponding to each wk ∈ aij , where aij is
a member of the triple 〈aij , rij , hij〉 = argij ∈ Argi, representing the argument span.

Domain-dependent features. Semantic features have been extracted from
PDK to link the interpretation I(s) to the Domain Knowledge. However, grounded
entities must be provided in order to extract such attributes from PDK. Conse-
quently, there is an implicit dependence of the AC on the PPK. In particular, the
following features have been designed to further generalize the model proposed in [17].

Entity-type property
The Entity-type property is a straightforward information that helps in generalizing
the semantic head of an argument through the class the corresponding grounded
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Feature FD BI AC
Linguistic features 3 3 3

Platform Model (PM) 3 7 7

Domain Knowledge (PDK) 7 7 3

Perception Knowledge (PPK) 3 3 7

Distributional Semantics (DS) 7 7 3

Table 5.1. Feature modeling of the three steps (i.e., FD, BI and AC)

entity belongs to. Again, for each pi and for each argij ∈ Argi, the semantic head
hij is grounded into a set of possible candidate entities through Gargi

j
. The most

promising candidate e, i.e., maxe g(hij , we), is extracted and its class C, obtained
through the predicate is-a(e, C), is applied to the semantic head feature vector.

Contain-ability property
The Contain-ability property is a domain-dependent semantic attribute, meaning
that all the elements of C can contain something. To this end, for each pi and for
each argij ∈ Argi, the semantic head hij is grounded into a set of possible candidate
entities through Gargi

j
. The most promising candidate e, i.e., maxe g(hij , we), is

then extracted and a boolean feature is applied to the semantic head feature vector,
reflecting the value of is-contain-able(C, t), where C is the class the entity e belongs
to.

A reader-friendly sum up is provided in Table 5.1 where, for each step of the
processing cascade, features and resources used are shown. In particular, while BI
uses only Linguistic features and PPK, in FD even the PM is exploited. Conversely,
as for the nature of the task, the AC step mostly relies on PDK and DS, in order to
provide effective generalization capability while choosing the correct semantic role.

5.3. Experimental Evaluation and Results
The scalability of the proposed framework towards the systematic introduction
of perceptual information has been evaluated in the semantic interpretation of
utterances in a house Service Robotics scenario. The evaluation is carried out using
the Human-Robot Interaction Corpus (HuRIC), presented in 5.4, that contains
commands in two languages, i.e., English and Italian ([168]).

The DS vectors used in the grounding function Γ have been acquired through
a Skip-gram model [115], through the word2vec tool (see Appendix A.1.3). By
applying the settings min-count=50, window=5, iter=10 and negative=10 onto the
UkWaC corpus [51], 250 dimensional word vectors have been derived for more than
110, 000 words. The SVMhmm algorithm has been implemented within the KeLP
framework [52].

Measures have been carried out on four tasks, according to a 10-fold evaluation
schema. The first three correspond to evaluating the individual interpretation steps,
namely the FD, BI and AC, (Sections 5.3.1, 5.3.2 and 5.3.3). In these tests, gold
annotations are assumed as input information for the task, even if they depend on a
previous processing step. The last test (Section 5.3.4) concerns the analysis of the
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FD
P R F1 RER

En pLing 94.52%± 0.04 94.32%± 0.08 94.41%± 0.05 -
Ground 95.59%± 0.02 96.31%± 0.05 95.94%± 0.03 27.42%

It pLing 94.84%± 0.22 95.58%± 0.19 95.19%± 0.19 -
Ground 95.14%± 0.17 95.54%± 0.15 95.32%± 0.14 2.52%

Table 5.2. FD results: evaluating the whole span

end-to-end interpretation chain. It thus corresponds to the ability of interpreting a
fully grounded and executable command and reflects the behavior of the system in
a real scenario.

While PPK is involved in both the FD and BI tasks, AC relies just on the PDK
and the DS. Hence, in order to emphasize the contribution of such information, two
settings have been tested.

The first relies just on linguistic features and information from the Semantic Map
is neglected. We call this setting Pure Linguistic (pLing), as the interpretation is
driven just by lexical/syntactic observation of the sentence. It refers to a configuration
in which only the features corresponding to the first two rows of Table 5.1 are
considered.

The second is a Grounded (Ground) setting. It is built upon the features designed
around the Semantic Map, that has been encoded into a set of predicates P, and
DS, represented by Word Embeddings. In order to enable for the extraction of
meaningful properties from P , grounding is based on the set G of entities populating
the environment and is built using the grounding function Γ(argij ,PPK). PPK
features are injected into the FD and BI steps, while PDK features together with
Word Embeddings are used into the AC process. Hence, this setting applies all the
features defined in Table 5.1.

Results obtained in every run are reported in terms of Precision (P), Recall (R)
and F-Measure (F1) as a micro-statistics across the 10 folds. The contribution of
Semantic Map information is emphasized in terms of Relative Error Reduction (RER)
over F1 with respect to the pLing setting, relying just on linguistic information.

5.3.1. Frame Detection
This experiment allows evaluating the performance of the system in recognizing
the actions evoked by the command. This step represents the entry point of the
interpretation cascade: minimizing the error at this stage is essential to avoid error
propagation throughout the whole pipeline.

Table 5.2 reports the results obtained for the two settings pLing and Ground,
over the two datasets (i.e., English and Italian). In this case, we count a prediction
as correct only whenever all the tokens belonging to lexical unit (Lu) have been
correctly classified.

First, it is worth emphasizing that the F1 is always higher than 94%. This means
that the system will be (almost) always able to detect the correct action expressed
by the command. In fact, linguistic features seem to already model the problem
with a good coverage of the phenomena.
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BI
P R F1 RER

En pLing 89.62%± 0.11 91.61%± 0.03 90.59%± 0.05 -
Ground 90.04%± 0.16 91.33%± 0.10 90.67%± 0.12 0.86%

It pLing 82.89%± 0.84 85.51%± 0.58 84.14%± 0.68 -
Ground 83.41%± 0.84 86.30%± 0.56 84.77%± 0.66 4.02%

Table 5.3. BI results: evaluating the whole span

However, when perceptual features (extracted from the PPK) are injected, the F1
increases up to 95.94%, with a RER of 27.42%. The contribution of such evidence
is mainly due to one of the most frequent errors, concerning the ambiguity of the
“take” verb. In fact, as explained in Section 5.2, due to the PP attachment ambiguity,
the interpretation of such verb may be different (i.e., either Bringing or Taking,
depending on the spatial configuration of the environment. As the pLing setting
does not rely on any kind of perceptual knowledge, the system is not able to correctly
discriminate among them. Hence, the resulting interpretation is more likely to be
wrong, as it does not reflect the semantics carried by the environment.

On the other hand, the Italian dataset does not seem to benefit from these
features. In fact, the RER in such a configuration is 2.52% (i.e., from 95.19% to
95.32%). This is probably due to the absence of the above linguistic phenomena
into the Italian language.

5.3.2. Boundary Identification

In this section, the ability of the BI classifier in identifying the argument spans of the
commands’ predicates is evaluated. According to the results reported in Table 5.3,
this task seems to be the most challenging one.

In fact, the F1 settles just under the 91% on the English dataset, with the pLing
and Ground settings scoring 90.59% and 90.67% respectively. Moreover, in this case
PPK does not seem to substantially contribute to the correct classification of the
argument boundaries.

On the other hand, in the Italian setting the F1 does not exceed 85% (84.14% and
84.77% for the pLing and Ground settings). However, the perceptual information
contributes to a slightly larger gain with respect to the one obtained on English.
This is probably due to the presence of commands where the spatial configuration
of the environment is essential to correctly chunk the argument spans. For example,
for a command like “porta il libro sul tavolo in cucina” (“bring the book on the
table in the kitchen”), the fragment il libro sul tavolo (the book on the table) may
correspond to one single argument in which sul tavolo (on the table) is a spatial
modifier of il libro (the book). In this case, in cucina (in the kitchen) composes
another semantic argument. This interpretation is spatially correct whenever, within
the corresponding Semantic Map, the book is on the table and the latter is outside
the kitchen. Conversely, if the book is not on the table which is, in turn, into the
kitchen, then sul tavolo in cucina (on the table in the kitchen) will constitute an
entire argument span.
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AC
P R F1 RER

En pLing 94.46%± 0.05 94.46%± 0.05 94.46%± 0.05 -
Ground 95.49%± 0.05 95.49%± 0.05 95.49%± 0.05 18.65%

It pLing 91.52%± 0.23 91.52%± 0.23 91.52%± 0.23 -
Ground 92.21%± 0.11 92.21%± 0.11 92.21%± 0.11 8.14%

Table 5.4. AC results: evaluating the whole span

5.3.3. Argument Classification

This experiment is the most interesting one, as here we inject the novel information
with respect to [17], extracted from PDK, regarding the Contain-ability property
and the class of the grounded entity.

As reported in Table 5.4, the system is able to recognize the involved entities
with high accuracy, with an F1 higher than 91.50% in both the English and Italian
datasets. This result is surprising when analyzing the complexity of the task. In
fact, the classifier is able to cope with a high level of uncertainty, as the amount of
possible semantic roles is sizable, i.e., 34 for the English dataset, 27 for the Italian
one.

Beside obtaining outstanding accuracy in all the configurations, a twofold contri-
bution is achieved when distributional information about words and domain specific
evidence is adopted. On the one hand, DS injects beneficial lexical generalization
into training data: frame elements of arguments whose semantic heads are close
in the vector space are seemingly tagged. For example, if the book in the training
sentence “take the book” is the Theme of a Taking frame, similar arguments for
the same frame will receive the same role label as volume in “grab the volume”.
Moreover, further lexical generalization is provided by including the class name of
the grounded entity in the feature space, so that lexical references like tv, tv set,
television set and television all refer to the same class Television.

On the other hand, information related to domain-dependent attributes of a
given class might be helpful to solve specific errors of the AC process. For example,
when including the Contain-ability property as a feature, we are implicitly suggesting
to the learning function that an object can contain something. Consequently, this
information allows to better discriminate whether an object must be labeled as
“Containing_object” rather than “Container_portal”.

5.3.4. End-to-End Processing Cascade

This section concludes the experimental evaluation by reporting the results obtained
through the end-to-end processing cascade. In this case, each step is fed with the
labels coming from the previous one: it thus represents a real scenario configuration,
when the system is operating on a robot.

In this configuration, only the results of the AC step are reported (Table 5.4), as
its output represents the end of the pipeline. Moreover, in this setting, the error
propagation is implicitly estimated, as each step is fed the information output from
the previous one. These results give thus an idea of the performance of the whole
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P R F1 RER
AC

En pLing 86.12%± 0.16 81.41%± 0.29 83.67%± 0.22 -
Ground 89.25%± 0.11 86.39%± 0.22 87.77%± 0.14 25.10%

It pLing 77.10%± 0.81 76.08%± 0.80 76.47%± 0.72 -
Ground 78.33%± 0.85 77.23%± 0.53 77.67%± 0.60 5.09%
Table 5.5. Evaluating the end-to-end chain against the whole span

P R F1 RER
AC

En pLing 91.04%± 0.07 91.54%± 0.07 91.28%± 0.06 -
Ground 92.90%± 0.04 93.34%± 0.04 93.11%± 0.02 20.89%

It pLing 83.07%± 0.41 87.30%± 0.30 85.07%± 0.31 -
Ground 84.15%± 0.33 88.83%± 0.27 86.35%± 0.24 8.58%

Table 5.6. Evaluating the end-to-end chain against the semantic head

system. Note that the DS and the domain-dependent features (Ground setting) boost
the performance for both languages. More specifically, the Ground configuration
consistently outperforms the pLing one for English, suggesting the benefits given by
the promoted feature space. For Italian, this behavior is less evident, even tough
results confirm the general trend.

In order to provide an even more realistic evaluation of the system, the perfor-
mance of the system has been measured by considering only the prediction over the
semantic heads. This evaluation wants to reproduce the usage of the framework,
where just the semantic head is adopted to instantiate and execute a plan. For
example, given the command “take the mug next to the keyboard”, together with
one of its interpretations

[take]Taking [the mug next to the keyboard]Theme,

only two information are required in order for the robot to execute the requested
action, namely the type of the action Taking and the object to be taken, mug,
which is pointed by the semantic head of the Theme argument.

The results reported in Table 5.5 are extremely encouraging for the application of
the proposed framework in realistic scenarios. In fact, over the English dataset, the
F1 is always higher than 91% in the recognition of the correct label of the semantic
head, along with semantic predicates and boundaries used to express intended actions.
Moreover, the recognition of the full command benefits from Semantic Map features,
with an F1 score increasing to 93.11%. In addition, the low variance suggests a good
stability of the system against the random selection of the training/tuning/testing
sets.

Though with lower results, such a trend is confirmed over the Italian dataset.
In fact, the difference between the two datasets is owed by two reasons: first, the
different linguistic phenomena and ambiguities present in the two languages do not
allow to directly compare the two empirical evaluations; second, the small number
of examples used to train/test the models biases the final results, provided that the
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English Italian
Number of examples 656 241
Number of frames 18 14
Number of predicates 762 272
Number of roles 34 28
Predicates per sentence 1.16 1.13
Sentences per frame 36.44 17.21
Roles per sentence 2.02 1.90
Entities per sentence 6.59 6.97

Table 5.7. HuRIC: some statistics

Italian dataset is composed of only 241 commands. However, the system seems to be
deployable on a real robot, with the best configuration obtaining an F1 of 86.36%.

5.4. HuRIC - Human-Robot Interaction Corpus
The computational paradigms proposed in this chapter are based on machine learning
techniques that strictly depend on the availability of training data. Hence, in order
to properly train and test the language understanding framework, a collection of
datasets has been developed, that together form the HuRIC3, formerly presented
in [13]. Since its first release, the corpus has been extended including several
dimensions [169]. This section provides a detailed presentation of the resource.

HuRIC is based on Frame Semantics ([53]) and captures cognitive information
about situations and events expressed in sentences. The most interesting feature
is that HuRIC is not system or robot dependent, both with respect to the surface
of sentences and with respect to the adopted formalism. In fact, HuRIC contains
information strictly related to NL semantics and it thus results decoupled from the
specific system.

Each sentence in HuRIC is then annotated with: lemmas, POS tags, dependency
trees and FrameNet annotations ([6]). Semantic frames and frame elements are used
to represent the meaning of commands, as, in our view, they reflect the actions a
robot can accomplish in a home environment. In this way, HuRIC can potentially
be used to train all the modules of the processing chain presented in Section 5.2.3.

HuRIC provides commands in two different languages: English and Italian.
While the English subset contains 656 sentences, 241 commands are available in
Italian ([168]). The number of annotated sentences, number of frames and further
statistics are reported in Table 5.7. Almost all Italian sentences are translations of
the original commands in English and the corpus maintains the alignment between
those sentences. These alignments might support further researches in different
areas, such as in the context of Machine Translation. Detailed statistics about the
number of sentences for each frame and frame elements are reported in Table 5.8
and 5.9 for the English and Italian subsets, respectively.

The corpus exploits different situations representing possible commands given
to a robot in a house environment. Hence, examples collected in HuRIC range

3Available at http://sag.art.uniroma2.it/huric.

http://sag.art.uniroma2.it/huric
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Frame Ex Frame Ex Frame Ex
Motion 143 Bringing 153 Cotheme 39
Goal 129 Theme 153 Cotheme 39
Theme 23 Goal 95 Manner 9
Direction 9 Beneficiary 56 Goal 8
Path 9 Agent 39 Theme 4
Manner 4 Source 18 Speed 1
Area 2 Manner 1 Path 1
Distance 1 Area 1 Area 1
Source 1
Locating 90 Inspecting 29 Taking 80
Phenomenon 89 Ground 28 Theme 80
Ground 34 Desired_state 9 Source 16
Cognizer 10 Inspector 5 Agent 8
Purpose 5 Unwanted_entity 2 Purpose 2
Manner 2
Change_direction 11 Arriving 12 Giving 10
Direction 11 Goal 11 Recipient 10
Angle 3 Path 5 Theme 10
Theme 1 Manner 1 Donor 4
Speed 1 Theme 1 Reason 1
Placing 52 Closure 19 Change_operational_state 49
Theme 52 Containing_object 11 Device 49
Goal 51 Container_portal 8 Operational_state 43
Agent 7 Agent 7 Agent 17
Area 1 Degree 2
Being_located 38 Attaching 11 Releasing 9
Theme 38 Goal 11 Theme 9
Location 34 Item 6 Goal 5
Place 1 Items 1
Perception_active 6 Being_in_category 11 Manipulation 5
Phenomenon 6 Item 11 Entity 5
Manner 1 Category 11
Table 5.8. Distribution of frames and frame elements in the English dataset

Frame Ex Frame Ex Frame Ex
Motion 51 Locating 27 Inspecting 4
Goal 28 Phenomenon 27 Ground 2
Direction 20 Ground 6 Unwanted_entity 2
Distance 13 Manner 2 Desired_state 2
Speed 8 Purpose 1 Instrument 1
Theme 3
Path 2
Manner 1
Source 1
Bringing 59 Cotheme 13 Placing 18
Theme 60 Cotheme 13 Theme 18
Beneficiary 31 Manner 6 Goal 17
Goal 26 Goal 5 Area 1
Source 8
Closure 10 Giving 7 Change_direction 21
Container_portal 6 Theme 7 Direction 21
Containing_object 5 Recipient 6 Angle 9
Degree 1 Donor 1 Speed 9
Taking 22 Being_located 14 Being_in_category 4
Theme 22 Location 14 Item 4
Source 8 Theme 12 Category 4
Releasing 8 Change_operational_state 14
Theme 8 Device 14
Place 3

Table 5.9. Distribution of frames and frame elements in the Italian dataset
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from simple and direct commands like “go to the kitchen”, to more complex ones
like “robot can you please go to the living room turn right and turn off the tv”.
HuRIC is composed of different subsets (i.e., 7 for the English and 4 for the Italian
subsets), characterized by different order of complexity, designed to differently stress
a labeling architecture. Each dataset includes a set of audio files representing robotic
commands, paired with the correct transcription. The environmental conditions
in which the commands have been uttered, are homogeneous within each subset,
ranging from very noisy, to completely noise-free.

The current release of HuRIC is made available through an XML-based format,
whose extension is .hrc (Listing 5.1).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <huricExample id="2650">
3 <commands>
4 <command>
5 <sentence>take the mug next to the keyboard</sentence>
6 <tokens>
7 <token id="1" lemma="take" pos="VB" surface="take" />
8 <token id="2" lemma="the" pos="DT" surface="the" />
9 <token id="3" lemma="mug" pos="NN" surface="mug" />

10 <token id="4" lemma="next" pos="JJ" surface="next" />
11 <token id="5" lemma="to" pos="TO" surface="to" />
12 <token id="6" lemma="the" pos="DT" surface="the" />
13 <token id="7" lemma="keyboard" pos="NN" surface="keyboard" />
14 </tokens>
15 <dependencies>
16 <dep from="0" to="1" type="root" />
17 <dep from="1" to="3" type="dobj" />
18 <dep from="3" to="2" type="det" />
19 <dep from="1" to="4" type="advmod" />
20 <dep from="4" to="7" type="nmod" />
21 <dep from="7" to="5" type="case" />
22 <dep from="7" to="6" type="det" />
23 </dependencies>
24 <semantics>
25 <frames>
26 <frame name="Bringing">
27 <lexicalUnit>
28 <token id="1" />
29 </lexicalUnit>
30 <frameElements>
31 <frameElement type="Theme">
32 <token id="2" />
33 <token id="3" />
34 </frameElement>
35 <frameElement type="Goal">
36 <token id="4" />
37 <token id="5" />
38 <token id="6" />
39 <token id="7" />
40 </frameElement>
41 </frameElements>
42 </frame>
43 </frames>
44 </semantics>
45 <audioFiles>
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46 <file name="newCorpus97_daniele.flac" />
47 </audioFiles>
48 </command>
49 </commands>
50 <semanticMap>
51 <entities>
52 <entity atom="p1" type="Cup">
53 <attributes>
54 <attribute name="contain_ability">
55 <value>true</value>
56 </attribute>
57 <attribute name="lexical_references">
58 <value>cup</value>
59 <value>mug</value>
60 <value>coffee cup</value>
61 <value>bowl</value>
62 </attribute>
63 </attributes>
64 <coordinate angle="0.0" x="2.0" y="5.0" z="0.0" />
65 </entity>
66 ...
67 <entity atom="k1" type="Keyboard">
68 <attributes>
69 <attribute name="contain_ability">
70 <value>false</value>
71 </attribute>
72 <attribute name="lexical_references">
73 <value>keyboard</value>
74 <value>console</value>
75 </attribute>
76 </attributes>
77 <coordinate angle="0.0" x="4.0" y="1.0" z="0.0" />
78 </entity>
79 </entities>
80 </semanticMap>
81 <lexicalGroundings>
82 <lexicalGrounding atom="p1" tokenId="3" />
83 <lexicalGrounding atom="k1" tokenId="7" />
84 </lexicalGroundings>
85 </huricExample>

Listing 5.1. Excerpt of an hrc file

Hence, for each command, the following information are stored:

1. the whole sentence (i.e., line 5);

2. the list of tokens composing it, along with the corresponding lemma and POS
tag (i.e., lines 6-14);

3. the dependency relations among tokens (i.e., lines 15-23);

4. the semantics, expressed in terms of Frames and Frame elements (i.e., lines
24-40);

5. the audio files associated to the command (i.e., lines 41-43);



5.5 The LU4R framework: adaptive spoken Language Understanding For
Robots 75

6. the configuration of the environment, in terms of entities populating the
Semantic Map, along with their semantic attributes (i.e., lines 46-74);

7. the gold groundings, providing mapping between linguistic symbols (namely,
words of the sentence) and entities of the semantic map (i.e., lines 75-78).

The main extension of HuRIC with respect to the version presented in [13] is
represented by pairing each utterance with a possible reference environment ([169]).
Each command is thus provided with an automatically generated Semantic Map,
reflecting the disposition of entities matching the interpretation, so that perceptual
features can be consistently derived for each command; hence, the latter can be
interpreted with respect to the environment itself. The map generation process has
been designed to reflect real application conditions. First, the PDK described in
Section 2.4 has been used to describe our world, in terms of classes (or categories)
that refer to entities of a generic home environment. Then, for each sentence s, the
corresponding PPK is populated with the set of entities referred by the sentence,
plus a control set of 20 randomly-generated additional objects, all taken from the
PDK specification. The naming set N of each class has been defined by simulating
the lexical references introduced through a process of HAM. To this end, for every
class name in the PDK, a range of possible polysemic variations has been defined,
by automatically exploiting lexical resources, such as WordNet [116], or by corpus-
analysis. The final set has been then validated by human annotators. As an example,
the class Cup is referred through the following variations: cup, mug, coffee cup and
bowl. The lexical variation allows augmenting the data set, as each training sentence
can be paired with more than one PPK.

5.5. The LU4R framework: adaptive spoken Language
Understanding For Robots

The computational paradigms presented in this chapter have been implemented and
made available to the community through a tool called LU4R ([18, 169]).4 In fact,
LU4R embodies the capabilities in terms of linguistic generalization characterizing the
presented data-driven approach. Such system has been already tested and deployed
in real robots, both in service robotics [172] and industrial applications [45].

The architecture of the LU4R framework considers two main actors, as shown
in Figure 5.4: the Robotic Platform and the LU4R chain (or LU4R). The com-
munication between the robot and the chain is realized through a Client/Server
architecture, where the Robotic Platform is the Client, whereas LU4R is the Server.
The Client-Server communication scheme between LU4R and the Robot allows for
the independence from the Robotic Platform, in order to maximize the re-usability
and integration in heterogeneous robotic settings.

As explained in Section 5.2, the SLU process implemented exhibits semantic
capabilities (e.g., disambiguation, predicate detection or grounding into robotic
actions and environments) that are designed to be general enough to be representative
of a large set of application scenarios. On the one hand, it is obvious that an

4Available at http://sag.art.uniroma2.it/lu4r.html

http://sag.art.uniroma2.it/lu4r.html
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Figure 5.4. The LU4R framework architecture

interpretation process must be achieved even when no contextual information about
the domain/environment is available, i.e., a scenario involving a blind, but speaking
robot, or when the actions a robot can perform are not made explicit. This is the
case when the command “take the mug next to the keyboard” is not paired with
any additional information and the ambiguity with respect to the evoked frame,
i.e., Taking vs. Bringing, cannot be resolved. On the other hand, LU4R makes
available methods to specialize its semantic interpretation process to individual
situations where more information is available about goals, the environment, and
the robot capabilities. These methods are expected to support the optimization of
the core SLU process against a specific interactive robotics setting, in a cost-effective
manner. In fact, whenever more information about the perceived environment (e.g.,
a semantic map) or about robot capabilities is provided, the interpretation of a
command can be improved by exploiting a more focused scope. That is, whenever
the sentence “take the mug next to the keyboard” is provided along with information
about the presence and position of mug and keyboard, the system is able to detect
the intended action, i.e., again either Taking or Bringing.

In order to better describe the different operating modalities of LU4R, some
assumptions toward the Robotic Platform must be made explicit; this allows to
precisely establish functionalities and resources that the robot needs to provide
to unlock the more complex processes. This information is thus used to express
the experience that the robot is able to share with the user (i.e., the perceived
environment where the linguistic communication occurs, and some lexical and
semantic properties about entities populating the environment) and some level of
awareness about its own capabilities (e.g., the primitive actions that the robot is
able to perform, given its hardware components). In the following, each component
of the architecture in Figure 5.4 is discussed and analyzed.

5.5.1. The Robotic Platform

The LU4R framework contemplates a generic Robotic Platform, whose task, domain
and physical setting are not necessarily specified. In order to make the SLU process
independent from the above specific aspects, the platform is assumed to require, at
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Figure 5.5. The LU4R Android app

least, the following modules:

• an Automatic Speech Recognition (ASR) system;

• an SLU Orchestrator;

• a Grounding and Command Execution Engine;

• a Physical Robot.

In developing the LU4R framework, both the ASR system and an SLU Orches-
trator have been implemented. The ASR is realized through the ad-hoc LU4R
Android app, whereas the SLU Orchestrator is implemented as a bunch of Robot
Operating System (ROS) nodes, here collected in a single component called LU4R
ROS interface. Additionally, the optional component Support Knowledge Base (SKB)
is expected to maintain and provide the contextual information discussed above.
Such resource aims at collecting some of the components presented in Section 5.2.1
(Figure 5.2).

While the discussion of the Robotic Platform is out of the scope of this thesis,
all the other components are hereafter shortly summarized.

LU4R Android app. An ASR engine allows to transcribe a spoken utterance
into one or more transcriptions. In the LU4R framework, the ASR is performed
through an ad-hoc Android application, the LU4R Android app.5 Figure 5.5 shows
some of the capabilities of the LU4R Android app.

It relies on the official Google ASR APIs, that offer valuable performances for an
off-the-shelf solution. The free-form ASR can be executed either in a continuous
recognition setting or in a push-to-talk configuration. The main requirement of this
solution is that the device hosting the software must feature an Internet connection,
in order to provide transcriptions for the spoken utterance. The App can be deployed

5Available at https://gitlab.com/lu4r_utilities/lu4r_android_app.

https://gitlab.com/lu4r_utilities/lu4r_android_app
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on both Android smart-phones and tablets. In the latter case, even though the
communication protocol remains the same, the tablet will be part of the robotic
platform. The tablet can be provided with a directional condenser microphone and
speakers.

The communication with the entire system is realized through TCP Sockets. In
this setting, the LU4R Android app implements a TCP Client, feeding LU4R with
lists of hypotheses through a middle-layer. To this end, the LU4R ROS interface
has been integrated in the loop, acting as the TCP Server.

Once a new sentence is uttered by the user, this component outputs a list of
hypothesized transcriptions, that are forwarded to the LU4R ROS interface.

In addition, the LU4R Android app features a virtual joypad, for tele-operating
the robot. In this way, this tool provides a complete system for controlling a robotic
platform.

LU4R ROS interface. As already stated, the LU4R ROS interface is a collection
of ROS nodes/packages that enable a full integration of LU4R into the ROS environ-
ment. The communication between the nodes leverages the ROS publisher/subscriber
protocol over topics, as shown in Figure 5.6. In this way, the LU4R ROS interface
can be deployed into any ROS-based robotic platform. The LU4R ROS interface is
thus composed of the following modules:

• android_interface is the main orchestrator of the LU4R ROS interface;

• lu4r_ros provides an interface to LU4R;

• aiml_ros implements a simple Dialogue Manager (DM), coded as an Artificial
Intelligence Markup Language (AIML) Knowledge Base (KB);

• framenet_ros_msgs provides a mapping between FrameNet frames and ROS
messages.
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Thanks to the modular architecture, each component is designed to be easily replaced;
the overall system described in the following.

android_interface. The android_interface6 is the entry point of the sys-
tem, acting as the actual orchestrator of the framework. It implements a TCP
Server for the LU4R Android app and is coded as a python ROS node waiting for
Client requests. Once a new request is received (i.e., a list of transcriptions for a
given spoken sentence from the LU4R Android app), this module is in charge of
extracting the perceived entities from a structured representation of the environment
(i.e., the Semantic Map, a sub-component of the SKB). Then, whenever a running
instance of LU4R is detected, the full list of hypotheses is published on a dedicated
topic (i.e., /speech_hypotheses). Otherwise, the best hypothesis is published on
the /best_speech_hypothesis.

This node is subscribed to two topics: (i) /lu4r_response, containing the feed-
back provided by LU4R in terms of FrameNet frames, and (ii) /dialogue_manager_
response that, instead, hosts the reply of a Dialogue Manager. Depending on the
response, the android_interface is then allowed to send a message back to the
LU4R Android app.

The communication protocol requires the serialization of both speech hypotheses
and entities of the Semantic Map into two different JSON objects (see Section 5.5.2
for more details). However, in order to obtain the desired interpretation, only the list
of transcription is mandatory. In fact, even though the environmental information is
essential for the perception-driven interpretation, whenever it is not provided, the
chain operates in a blind setting.

In addition, such node interfaces with a ROS-compliant navigation system; hence,
through the virtual joypad coded into the Android App (Figure 5.5), it is possible
to tele-operate the robot.

lu4r_ros. The lu4r_ros7 is an interface to LU4R, providing the latter with
transcribed sentences and retrieving interpretations, through HTTP communications.
When launching the node, it requires the IP address and port of a running LU4R
instance; then, the node waits until LU4R is ready to serve.

This ROS node is subscribed to /speech_hypotheses, which contains the hy-
potheses list, encoded as a JSON string (see Section 5.5.2). This string is then
sent to LU4R, whose reply is published onto the /lu4r_response, as interpretation
encoded in Command Frame Representation (CFR) format [146].

aiml_ros. The aiml_ros8 implements a DM through AIML KBs. This node
depends on PyAIML9, an interpreter designed to correctly handle AIML files.

The node is subscribed to the /best_speech_hypothesis topic, containing
the best transcription provided by the LU4R Android app. Whenever a new
transcription is published onto the topic, a callback function processes the user’s

6Available at https://gitlab.com/andreavanzo/framenet_ros_msgs.
7Available at https://gitlab.com/andreavanzo/lu4r_ros
8Available at https://gitlab.com/andreavanzo/aiml_ros
9Available at https://pypi.python.org/pypi/PyAIML

https://gitlab.com/andreavanzo/framenet_ros_msgs
https://gitlab.com/andreavanzo/lu4r_ros
https://gitlab.com/andreavanzo/aiml_ros
https://pypi.python.org/pypi/PyAIML
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utterance, gathering the next dialogue turn from the AIML KB. The result is finally
published onto the /dialogue_manager_response.

framenet_ros_msgs. The framenet_ros_msgs10 provides a mapping between
FrameNet frames and ROS messages for a better integration of the linguistic theory
into the ROS environment. Each frame is encoded into a ROS message, with semantic
arguments corresponding to ROS message fields. For example, the Theme semantic
argument of the Bringing frame is mapped into the field string theme.

Grounding and Command Execution. Even though the grounding process is
placed at the end of the loop, it is discussed here, as it is a component of the Robotic
Platform. In fact, this process has been completely decoupled from the SLU process,
as it may involve perception capabilities and information unavailable to LU4R or, in
general, out of the linguistic dimension. Nevertheless, this situation can be partially
compensated by defining mechanisms to exchange some of the grounding information
with the linguistic reasoning component. The grounding carried out by the robot is
triggered by a logical form expressing one or more actions through logic predicates,
that potentially correspond to specific frames. The output of LU4R embodies the
produced logic form: this latter exposes the recognized actions that are then linked
to specific robotic operations (i.e., primitive actions or plans). Correspondingly,
the predicate arguments (e.g., objects and location involved in the targeted action)
are detected and linked to the objects/entities of the current environment. A fully
grounded command is obtained through the complete instantiation of the robot
action (or plan) and its final execution.

5.5.2. The LU4R component
The LU4R component implements the language understanding cascade (Figure 5.7)
described in Section 5.2.3, whose models have been trained over the HuRIC corpus
(see Section 5.4). It realizes the interpretation service as a black-box component, so
that the complexity of each inner sub-task is hidden to the user. The service is realized
through a server that keeps listening to natural language sentences and outputs the
corresponding interpretation. It is entirely coded in Java and released as a single
Jar file. The LU4R module is composed by six modules, whose final output is the
interpretation of a utterance. First, Morpho-syntactic and syntactic analysis
is performed over the available utterance transcriptions by applying morphological
analysis, POS tagging and syntactic analysis. In particular, dependency trees are
extracted from the sentence as well as POS tags. Morpho-syntactic and syntactic

10Available at https://gitlab.com/andreavanzo/framenet_ros_msgs.

https://gitlab.com/andreavanzo/framenet_ros_msgs
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analysis is realized through the Stanford CoreNLP suite [110] when English is the
targeted language, and the Chaos parser [9] for Italian commands.

Then, if more than one transcription hypothesis is available, the Re-ranking
module is activated to compute a new ranking of the hypotheses list, in order to get
the best transcription out of the initial ranking. This module is realized through
two orthogonal approaches: a learn-to-rank approach, where a SVM exploiting a
combination of linguistic Kernels is applied [10], or a domain-dependent approach,
where grammar designed for common HRI tasks is leveraged to improve the robustness
of the ASR through a scaling-down strategy (see Chapter 4).

The Linguistic Grounding module implements the Linguistic Grounding func-
tion described in Section 5.2.2. It aims at providing candidate grounded entities,
extracted from the Perception Knowledge, for the lexical symbols of the sentence.
This information is then injected into the subsequent steps as features, for linking
the interpretation to the context of the sentence.

Finally, the best transcription along with grounded entities are the inputs of the
interpretation cascade presented in Section 5.2.3 and composed of Frame Detection,
Argument Identification and Argument Classification steps. The SVMhmm

algorithm for the above three steps of the semantic analysis is implemented through
the KeLP [52].

LU4R is a service that can be invoked through HTTP requests. Its implementa-
tion is realized through a server that keeps listening to NL sentences and outputs
an interpretation for them. The communication between the client of the service
(the Robotic Platform) and LU4R is described hereafter. The LU4R Chain requires
an initialization phase, where the process is run and initialized, followed by a
service phase, where LU4R is ready to receive requests.

Initialization phase. The initialization phase consists in creating an instance
of the server, among the ones available, e.g., either basic or simple. The basic
setting does not contemplate Perception Knowledge during the interpretation process.
Conversely, the simple configuration relies on perceptual information, enabling a
context-sensitive interpretation of the command at the predicate level.

During the initialization, a specific output format can be chosen, among the
available ones. xdg is the default output format, where the interpretation is given
in the eXtended Dependency Graph (XDG) format, an XML compliant container
(see [9]). In the amr format, the interpretation is provided as Abstract Meaning
Representation (AMR)Abstract Meaning Representation (AMR) (see [7]). Finally,
cfr (CFR) is a format for the predicates produced by the chain defined in [146], in
the context of RoCKIn competition. The language parameter allows to choose the
operating language of LU4R. At the moment, only en (English) and it (Italian)
versions are supported.

Service phase. Once the service has been initialized, it is possible to start asking
for interpreting user utterances. The server thus waits for messages carrying the
utterance transcriptions to be parsed and entities of the Semantic Map. Each sentence
here corresponds to a speech recognition hypothesis. Hence, it can be paired with
the corresponding transcription confidence score, useful in the Re-Ranking phase.
The body of the message must then contain the list of hypotheses encoded as a
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JSON array (Listing 5.2), called hypotheses, where each entry is a transcription
paired with a confidence, according to the following syntax:

1 {
2 "hypotheses":[
3 {
4 "transcription":"take the mug next to the keyboard",
5 "confidence":"0.9",
6 "rank":"1"
7 },
8 ...
9 {
10 "transcription":"take them all next to do keyboard",
11 "confidence":"0.2",
12 "rank":"5"
13 }
14 ]
15 }

Listing 5.2. JSON string of a list of transcriptions

The JSON must be passed as hypo parameter of the HTTP request. The rank
attribute is redundant and it used only as an additional check.

Furthermore, when the simple configuration is selected, the input can include the
list of entities populating the environment the robot is operating into (i.e., the set
EPPK defined in Section 5.2.2), again encoded as a JSON array (Listing 5.3). Despite
of the representation of the environment adopted by the robot, this environment-
dependent interpretation process requires the following information for each entity
perceived by the robot, i.e, collected into the Semantic Map, in this setting:

• the type of each entity; it reflects the class to which each specific entity
belongs (e.g., it is an object, such as a Cup, Keyboard, or a location, such as
Living_Room or Kitchen);

• the preferredLexicalReference used to refer to a class of objects; it is
crucial in order to enable a linguistic grounding between the commands uttered
by the user and the entities within the environment. These labels are expected
to be provided by the engineer initializing the robot. For example, an entity
of the class Cup can be referred by the string mug. If no label is given, it is
derived by the name of the corresponding class, so that cup can be used to
refer to the objects of the class Cup;

• in the case the engineer provides more than one label, these can be specified
through alternativeLexicalReference, as a list of alternative naming for a
given entity;

• the position of each entity is essential to determine the shallow spatial relations
between entities (e.g., two objects are near or far from each other). To
this end, each entity is associated with its corresponding coordinate in the
world, in terms of planar coordinates (x,y), elevation (z) and angle as the
orientation. At this moment, a simple grid map approach is used. Two objects
are considered near whenever their Euclidean distance is less than 2, far
otherwise.
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All the above information can be provided to LU4R through the following JSON
input:

1 {
2 "entities":[
3 {
4 "atom":"p1",
5 "type":"Cup",
6 "preferredLexicalReference":"cup",
7 "alternativeLexicalReferences":["cup","mug",...],
8 "coordinate":{
9 "x":"13.0",

10 "y":"6.5",
11 "z":"3.5",
12 "angle":"3.5"
13 }
14 },
15 {
16 "atom":"k1",
17 "type":"Keyboard",
18 "preferredLexicalReference":"keyboard",
19 "alternativeLexicalReferences":["keyboard","console",...],
20 "coordinate":{
21 "x":"12.0",
22 "y":"8.5",
23 "z":"0.0",
24 "angle":"1.6"
25 }
26 }
27 ]
28 }

Listing 5.3. JSON string of a the entity list

The above JSON string must be passed as entities parameter of the HTTP
request.

Finally, the service can be invoked with a HTTP POST request that puts together
the hypo and entities JSONs as follows:
http://IP_ADDRESS:PORT/service/nlu
POST parameters: hypo={"hypotheses":[...]}

entities={"entities":[...]}

5.6. Contributions
This chapter presented a comprehensive framework for the definition of robust
natural language interfaces for HRI, specifically designed for the automatic interpre-
tation of spoken commands towards robots in domestic environments. The proposed
solution allows to inject contextual evidence into the interpretation process. It
relies on Frame Semantics and supports a structured learning approach to language
processing able to produce meaningful commands from individual sentence tran-
scriptions. A hybrid discriminative-generative learning method is proposed to map
the interpretation process into a cascade of sentence annotation tasks.

Starting from [17, 166, 170], this thesis defines a systematic approach to enriching
the example representation with additional feature spaces not directly addressable



84 5. The Role of Context in Language Modeling

by the linguistic level. The aim is to leverage knowledge derived from a semantically-
enriched implementation of a robot map (i.e., its Semantic Map), expressing infor-
mation about the existence and position of entities surrounding the robot, along
with their semantic properties. Observations extracted from the Semantic Map
and useful for the interpretation are then expressed through a feature modeling
process. Thanks to the discriminative nature of the adopted learning mechanism,
such features have been injected directly into the algorithm. As a result, command
interpretation is made dependent on the robot’s perception of the environment.

The proposed machine learning processes have been trained by using an extended
version of HuRIC. This corpus, originally composed of examples in English, has been
improved by collecting also a subset of examples in Italian. Moreover, each example
has been paired with the corresponding Semantic Map, linking the command to the
environment in which it has been uttered and enabling the extraction of valuable
contextual features. This novel corpus promotes the development of the proposed
interpreting cascade in more languages but, most of all, it will support the research
in grounded natural language interfaces for robots.

The empirical results obtained over both languages are quite impressive, specially
when the system is evaluated in a real scenario (end-to-end cascade evaluated against
the semantic head). The results suggest several observation. First, they confirm the
effectiveness of the proposed processing chain. In fact, even when only linguistic
information are exploited, the system obtains interesting results. Second, they
prove the effect of contextual features extracted from the Semantic Map, which
contributed, with different extent, to the improvement of each sub-task. Finally,
the results promote the application of the same approach in different languages. In
fact, the systematic extraction of both linguistic and contextual features makes the
system easy to be extended to other languages.

In conclusion, the contributions of this chapter are: (i) the introduction of a
grounded language understanding systems for the interpretation of robotic commands,
(ii) the systematic injection of contextual features into the learning/tagging system,
that allows to interpret NL commands coherently with the operational environment
and the targeted robotic platform, (iii) experimental evaluations of the proposed
models, that emphasize the impact of contextual information with respect to the
addressed task, (iv) a corpus of robotic commands (HuRIC) that can support the
development of data-driven systems for the interpretation of human language, and
(v) a ready-to-use tool (LU4R) that can be deployed onto any robotic platform, and
that implements the paradigms proposed in this chapter.

All the above resources and findings make a step forward towards the develop-
ment of robots like Roy. In fact, when dealing with situated Spoken Human-Robot
Interaction (SHRI), the pure linguistic dimension is not enough to properly rep-
resent the language meaning; on the contrary, we proved that even the process of
understanding a command can be enhanced by leveraging the information provided
by the operational context.
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Chapter 6

The Role of Context in
Dialogue Modeling

This chapter focuses on the problem of learning dialogue policies to efficiently
support robot teaching tasks (see Section 1.2.3) so that the effort required by
humans in providing knowledge to the robot through dialogue is minimized. This
is a feature that Roy exhibits (Section 1.1); in fact, while learning the objects of
the environment, it is able to leverage the acquired information to autonomously
infer new knowledge. The underlying idea of the proposed approach introduced
in [173], is that perceived context, acquired through robot’s sensors, can represent
a valuable source of information to drive the teaching process (Figure 6.1). The
addressed task refers to the process of acquiring semantic attributes through natural
language interactions that is directly related to Human Augmented Mapping (HAM)
(presented in Section 2.5.1). In fact, the proposed interactive system for HAM enables
the acquisition of semantic properties of objects through interactions that become
more and more efficient over time, as the tutoring effort is quickly minimized. The
dialogue policy is based on a multi-objective Markov Decision Process (MDP), while
the optimization problem is solved through Reinforcement Learning (RL). To this end,
such cost-effective teaching can be obtained by exploiting the increasing reliability of
the visual classifiers that are learned incrementally over the perceived context. The
visual classifier is here realized by combining a pre-trained Convolutional Neural
Network (CNN) with a Load-Balancing Self-Organizing Incremental Neural Network
(LB-SOINN). Images acquired by the robot’s depth camera are preprocessed and fed
to the CNN, which maps them onto a lower-dimensional feature space. With every
new input feature vector, the LB-SOINN is able to adapt in order to reflect the
underlying topology of the data distribution. The operational hypothesis is thus that,
whenever perceptual information of the operational context is properly exploited,
the Dialogue Manager (DM) is able to minimize the tutoring cost, resulting in a less
tedious interactive mapping process.

Such hypothesis has been validated by running several simulated empirical
investigations, whose outcomes show that the resulting adaptive dialogue strategy is
able to find an optimal trade-off between the classifier accuracy and the tutoring cost.
Moreover, results are encouraging for the deployment of the system in real scenarios.
In fact, the experiments showed that the policies can be successfully trained on a
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Figure 6.1. Task-based dialogic interactions are more effective when context is properly
exploited.

small set of examples and yet, generalize well to perform properly on larger datasets.
The chapter is thus structured as follows. Section 6.1 presents the specific

literature and contextualizes the work, while in Section 6.2 the overall framework is
presented. A quantitative evaluation of the system is provided in Section 6.3, along
with a discussion of the results (Section 6.4). Section 6.5 shows a demonstration of
the framework in a real scenario. Finally, Section 6.6 reports the conclusions of the
work and the contributions of the chapter.

6.1. Related Work

In recent years, several systems have aimed at mapping the operational environment
of a robot with semantic attachments. According to the definition provided in [126],
the resulting Semantic Map is a representation of the environment that couples the
spatial structure with semantic information concerning locations and objects therein.
In this respect, such a process is often carried out by associating symbols to physical
elements of the environment [77].

Several works treat the problem as a fully automated process. In [28] the
authors focused on the recognition of rooms by extracting valuable attributes.
In [27, 60, 68, 120] topological maps are built upon the metric ones, enabling the
robot to perform an aware navigation of the environment. With the recent advances
in object recognition and categorization, several approaches exploiting visual features
have been proposed [121, 181].

A few approaches rely on the presence of a human in the learning loop (HAM),
acting as a tutor who instructs the robot to learn the environment. In fact, fully
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automated semantic mapping systems are error-prone and do not provide the wide-
range knowledge that can be acquired by interacting with a user through speech. For
example, in [123] the authors rely on a multivariate probabilistic model to associate
semantic labels to spatial regions and on the support of the user in selecting the
correct one. Conversely, in [95] clarification dialogues are used to support the
mapping process. Such an approach is further extended in [187] to create conceptual
representations of indoor environments which are used in human-robot dialogue.
In [130] the authors use manifold modalities for a multi-layered semantic mapping
system to categorize places and build topological maps. More recently, in [67] a
human-augmented semantic mapping system is presented. The authors focus on
an online setting, where the semantics of objects is acquired incrementally through
long-term interactions with the user. The dialogue policy is implemented beforehand
through Petri Net Plans (PNPs) and the robot is not enabled to infer semantic
properties of new objects from the acquired knowledge. In [163], the authors propose
an approach for the opportunistic acquisition of objects descriptors (or attributes)
relying on the users’ feedback. Though the task is similar, our system focuses mainly
on the minimization of the tutoring cost during the teaching activity.

There are several novelties that differentiate this approach from the literature
of the field. First, the proposed interactive system obsessively exploits contextual
information through an incremental object classifier to collect visual evidence of
the objects. Such knowledge is then used to automatically recognize new objects,
supporting a quick acquisition of the semantic map. The dialogue interactions benefit
from an analysis of the visual classifier reliability, as this information is exploited to
determine whether to ask the human tutor a clarification question or not. Moreover,
the proposed DM driving the semantic attribute learning is entirely data-driven.
This feature is essential to enable the deployment and optimization of a robotic
platform in heterogeneous environments, interacting with different users speaking
different languages. Finally, the acquisition of the policies can be performed on a
very small set of examples, while still showing good performance when tested on
larger datasets. This feature enables the deployment of our approach in a long-term
mapping scenario. Moreover, the policies may be further improved while the system
is operating and, hence, adapted to the specific user.

6.2. Acquiring Semantic Attributes through
Interaction and Perception

Semantic Mapping is a task that involves several sub-problems, such as the repre-
sentation of the semantic properties, route planning, interaction management, and
sensing ([171]). In this chapter, we will focus on two of them: (i) the management of
the dialogue for the acquisition of semantic properties, and (ii) the memorization of
synthetic representations of the object that are used to compose the semantic map.
Table 6.1 shows two running examples of possible interactions, where tutor and
learner interactively exchange information about the category of a particular visual
object. On the left, the interaction is triggered by the user, that asks the robot about
the category of a specific object; on the right, the robot takes the initiative and the
user teaches a new object by replying to its questions. It is worth emphasizing that
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(a) Tutor Initiative (b) Learner Initiative
T(utor): what is this object?
L(earner): I have no idea.
T: a shampoo bottle.
L: okay, shampoo bottle.
T: good job.

L: a shampoo bottle, am I right?
T: no, it is not.
L: so what is it?
T: an apple.
L: okay, got it.

Table 6.1. Dialogue Examples from the synthetic Dialogue Collection: (a) the user takes
the initiative (b) the learner takes the initiative.
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Figure 6.2. Overview of system architecture for semantic attributes learning

at the very first interaction, the robot tries to make a guess about the category of
the object (i.e., “a shampoo bottle, am I right?”). This is exactly the behavior we
might want, a system that is able to exploit the acquired knowledge to improve
its capabilities. In fact, even though in this interaction the category prediction is
wrong, a better visual classifier would be able to catch the correct label and the
interaction would be composed of just two dialogue turns (e.g., L: “a shampoo bottle,
am I right?” – T: “yes, it is.”).

In this respect, we describe hereafter the proposed interactive multi-modal system
in support of learning semantic map attributes (e.g., visual classes) through natural
conversational interaction with human tutors. RL is exploited for the learner’s
dialogue strategy optimization, while the tutor is simulated here in a data-driven
fashion using synthetic dialogue examples (e.g., Table 6.1). The same method can
be applied to a real scenario, where users interact with the deployed system about
the objects present into the environment.

6.2.1. Overall System Architecture

In this section, the proposed system architecture (see Figure 6.2) is introduced. It is
composed of two essential modules: a Vision Module and a Dialogue Module, that
actively interplay to achieve the goal of acquiring the object label.
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Vision Module. The Vision Module is built upon the architecture proposed
in [128], which accomplishes incremental online learning by combining a LB-SOINN
[188] and a pre-trained CNN based on the architecture proposed in [94]. The combi-
nation of these two algorithms allows to leverage the great representational power of
deep CNNs while retaining the ability to adapt to new data points incrementally
provided by the LB-SOINN. In particular, the latter is an essential requirement
for robots operating in real and dynamic environments, since it is impossible to
anticipate, synthesize and design all the possible situations that the robot may
encounter during its operation.

The system operates on two channels, processing RGB and depth images respec-
tively. Both channels resize and rescale the input images to the format expected by
the CNN. The depth channel further processes the depth image to produce a col-
orized surface normals image. Once the images have been preprocessed, they are fed
into two identical pre-trained CNNs, that output the corresponding feature vectors.
These feature vectors are further combined by computing their average; the result is
finally used to update and grow the LB-SOINN. Effectively, this module allows to
ground noun words such as “apple” and “shampoo”, which are used as parameters
of the Dialogue Acts in the dialogue module, onto their visual representations.

Dialogue Module. This module relies on a classical architecture for dialogue
systems, composed of Dialogue Manager (DM) and Natural Language Understanding
(NLU), as well as Natural Language Generation (NLG) components. These com-
ponents interact via Dialogue Act representations [156] (e.g., inform(obj = apple),
ask(object)). The NLU component processes human tutor utterances by extracting a
sequence of key patterns, slots and values, and then transforming them into dialogue-
act representations, following a list of hand-crafted rules. The NLG component
makes use of a template-based approach that chooses a suitable learner utterance for
a specific dialogue act, according to the statistical distribution of utterance templates
from synthetic dialogue examples. Finally, the DM component is implemented with
an optimized learning policy using RL (see Section 6.2.3). This optimized policy is
trained to (i) process Natural Language (NL) conversations with human partners,
and (ii) achieve a better balance between classification performance and the cost of
the dialogue to the tutor in an interactive learning process.

6.2.2. Visual Object Classification

As mentioned in Section 6.2.1, one of the main components of the applied vision
module is the LB-SOINN (for more details, see Appendix A.2.1). This method is
based on the Self-Organizing Map [87] and is able to learn the underlying topology of
the data distribution, without the need to specify the number of classes in advance.
Operationally, each node in the network has an associated weight which lives in the
feature space. Every time a new image is input to the vision module, the LB-SOINN
algorithm assesses whether a new node has to be added to the network, based on
the feature vector similarity to all the other nodes’ associated weights. If no node is
added, then the closest node and its neighbors weights are updated, and the two
closest nodes are joined by an edge. In this way, the structure of the network evolves
to reflect how the data is distributed in the feature space.
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As the focus of this task is on object classification as opposed to image classifi-
cation, the contributions of all the images corresponding to the same object have
been considered in order to produce a classification result. However, this procedure
is consistent with a real scenario, where a robot may look at the same object from
different views and infer what it is, based on the consensus achieved from the results
for every individual view.

In order to classify each image, a confidence score is computed as the average
inverse distance between its feature vector and the weights of every node belonging
to a given class, i.e., the closest the feature vector is to the nodes corresponding
to the given class, the bigger the score that class will receive. This procedure is
repeated for every class in the network and then the resulting confidence scores are
normalized, such that they resemble probabilities, i.e., their sum is equal to 1. Hence,
the class that receives the highest normalized score is chosen as the classification
result for that image. In particular, the normalized confidence score is computed as
follows:

conf = 1
N

N∑
i=1

 1
ni

ni∑
j=1

1
D(p, qj)

 (6.1)

where ni is the number of nodes for the ith class, N is the number of classes and
D(p, qj) is the distance between the feature vector p and the weight qj corresponding
to the jth node. The procedure proposed by [188] is applied for the computation of
D(p, qj), as a combination of Euclidean and cosine distances affected by a weight,
that is, in turn, a function of the dimensionality of the feature vector, i.e., for
low-dimensional features, the Euclidean distance will be dominant whereas for
high-dimensional features, the cosine distance will be dominant:

D(p, qj) = 1
ηd

EUpqj − EUmin
1 + EUmax − EUmin

+

+
(

1− 1
ηd

)
COpqj − COmin

1 + COmax − COmin

(6.2)

where d is the dimension of the feature vector, η = 1.001 is a pre-defined param-
eter, EUpqj is the Euclidean distance between p and qj , EUmax and EUmin are
the maximum and minimum Euclidean distances between any two nodes in the
network respectively, and COpqj , COmax and COmin are the equivalent quantities
corresponding to the cosine distance measure.

Finally, a voting schema is adopted over all the images of the object, normalizing
again for all the classes that were returned as potential candidates. The final result
of an object classification is defined as the class that obtains the highest consensus
among all the images, i.e., highest probability.

6.2.3. An Adaptive Dialogue Strategy for Interactive Mapping
Tasks

For learning the dialogue policy, we foster the idea that a comprehensive teachable
system should learn as autonomously as possible, rather than involving the human
tutor too frequently [152]. Accordingly, as pointed out in [184], an intelligent agent
should provide the capability of finding an optimized trade-off between the goal
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achievement and the tutoring cost in a particular task. In other words, given the
visual mapping task, the agent should be able to learn the scene accurately, and
with little effort from human instructors. To this end, in order to optimize the
trade-off, the interactive mapping problem can be formulated into two sub-tasks:
when and how to learn the grounding mappings. These sub-tasks are trained using
RL with a multi-objective MDP, consisting of two sub-MDPs (for more details, see
Appendix A.1.2). The robot behavior is characterized by the following sequence of
steps: (i) a visual instance is shown to the agent/learner; (ii) based on the outcome
of the instance classification, i.e., a confidence score for each category acquired so
far, the agent/learner determines when and how to ask questions; (iii) the dialogue
continues with a response from the user.

When to Learn

In the first MDP, called adaptive-threshold MDP, the policy is required to learn when
the robot needs to acquire useful information from human tutors (i.e., objects’ labels),
where a form of active learning is taking place: the agent learns to ask questions
about particular objects only whenever it is uncertain about its own predictions. In
order to establish the visual classifier reliability, a positive confidence threshold is
adopted, which determines when the learner can trust its visual predictions. This
threshold represents the core role in achieving an optimal trade-off between the
classification performance and the tutoring cost, since the learner’s behavior (e.g.,
whether to seek feedback from the tutor or not) is dependent on this threshold.

To this end, the agent acquires here an adaptive strategy that aims at maximizing
the overall performance by properly adjusting the confidence threshold in the range
from 0.9 to 1. Moreover, each training episode terminates when the agent passes
through all instances in the visual dataset. The problem is thus modeled as follows.

State Space. The adaptive-threshold MDP operates on a 2D state space, consist-
ing of curThreshold and levelRel. While curThreshold represents the positive
threshold that the agent is currently applying, levelRel is applied to locally measure
the reliability of the visual classifier after a single learning step. To this end, in order
to define a learning step, the total number of instances (objects) is clustered into
bins, with each bin containing nB instances and representing a single learning step.
Hence, levelRel is computed as a discretization of the Local Accuracy into three
levels as below:

levelRel =


1, if Acc[−1,1]

loc > 0
0, else if Acc[−1,1]

loc = 0
−1, otherwise

(6.3)

where Acc[−1,1]
loc represents the Local Accuracy Accloc of classifiers (defined in Sec-

tion 6.3.1), rescaled between −1 to 1. In practice, Local Accuracy is expected
to provide a quantitative extent of the visual classifier performance over a single
individual bin of objects.

Action Selection. Based on the performance of the classifier on the previous
learning step, the agent updates the state space of the MDP by either increasing/de-
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creasing the current confidence threshold by 0.02 or keeping it to the same value.
Hence, the possible actions this agent may choose are Increase, Decrease and
Keep-The-Same.

Reward Function. The local reward function Rloc for learning the adaptive-
threshold agent is defined to be proportional to the Local Accuracy Accloc of the
visual classifier, computed over each bin of nB instances. Hence, the system will
reward the action if the rescaled accuracy Acc[−1,1]

loc is greater than 0, otherwise, the
action is penalized.

How to Learn Using Dialogue

The second MDP aims at effectively acquiring useful information through interactions
with human partners. In this case, the action selection is highly biased by the previous
MDP, as it depends on the threshold level controlled by the adaptive-threshold MDP.
In fact, if the learner has a low confidence on its predictions, i.e., the confidence
score output by the visual classifier is lower than 0.5, it may ask Wh-questions to
directly acquire correct labels from the tutor (e.g., “what is this object?”). Otherwise
the learner will make a guess about the label by either asking a Yes-No-question
(e.g., “is this an apple?”), or directly assigning the predicted label to the object,
thus without relying on the user’s intervention (e.g., “this is an apple.”). In addition,
the learner is also expected to produce coherent conversations with a human partner,
i.e., understand particular dialogue intents from humans and properly produce the
next responses. In this MDP, every single dialogue represents an episode and is
terminated when the class name is either taught by a human tutor or inferred
through a sufficiently high confidence score. Accordingly, the RL process and the
corresponding MDP have been configured as follows.

State Space. The dialogue policy initializes a 3D state space, defined through the
variables cStatus, preDAts and preContext. In particular, cStatus is applied to
represent the current status of predictions about a particular object and evaluated
as follows:

cStatus =


2, if conf > curThreshold
1, else if 0.5 ≥ conf ≥ curThreshold
0, otherwise

(6.4)

where conf is the confidence score about a specific object and output by the visual
classifier and curThreshold is the threshold level computed by the adaptive-threshold
MDP. Hence, the status level is a function of the confidence score and the positive
threshold described above. Conversely, preDAts represents the actions the tutor
performed in the previous dialogue turn. In fact, this variable is meant to capture
the short history of the interaction flow, represented by the previous dialogue turn.
This variable is essential to properly make the robot turn to be dependent on and
coherent with what the user said. Finally, preContext represents whether a visual
category was mentioned in the dialogue history and what category it is (e.g. class
of the object, its color, shape, . . . ). In this work, as only the class name of the
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visual object is taken into account, preContext contains one out of two values, i.e.,
unmentioned (U) and object class name (C).

Action Selection. The actions are chosen based on the analysis of task-oriented
dialogue actions occurring in a dataset of hand-crafted dialogue examples (see,
for example, Table 6.1), where each sentence is labeled with its corresponding
dialogue acts. This set includes dialogue acts like Wh-questions, Polar-questions,
DoNotKnow, Acknowledgment, as well as Listening.

Reward signal. The reward signal is defined to be a global function Rglob:

Rglob = 10− Cost− Penal (6.5)

which takes into account the cumulative cost of the tutoring process (Cost, defined
in Section 6.3.1) in a single conversation, and penalties (Penal) for inappropriate
actions performed by the learner (e.g., if the learner does not answer a question).

6.3. Experimental Evaluation
The experimental setup aims at simulating a semantic mapping task, where the robot
navigates throughout the environment to acquire semantic properties of the objects
populating its world. Notice that while the problems of planning and navigation are
out of the scope of this work, the focus here is on the category (or label) of objects
(e.g., apple, calculator, . . . ). However, it worth emphasizing that the approach
can be easily extended for the acquisition of other properties, such as color and
shape.

Figure 6.3 shows the GUI used to visualize the simulated environment. The
robot keeps moving into the assigned area (grid map in the center of Figure 6.3),
seeking for unknown objects (the red squares in the grid). Once an item is reached
(orange cells), the visual classifier is fed with images corresponding to the current
instance (e.g., on the bottom right box in Figure 6.3). The confidence score provided
by the visual classifier is then used for deciding whether to assign the predicted label
(without an interaction with the user) or to ask a Polar/Wh-question, according
to the current threshold level. At the end of the interaction, the object is finally
labeled (green cells) with the category provided by the user1, and the corresponding
images are used to train the visual classifier. It is worth noting that the classifier
is updated only whenever the label is provided by the user. That is, when the
agent/learner trusts the classifier, we assume that the specific instance is already well
represented in the model. Such a conservative approach aims at avoiding possible
noise introduced into the net when unnecessary images are learned.

6.3.1. Evaluation Metrics
The evaluation of the trained learning/dialogue strategy is based on metrics inspired
by the PARADISE evaluation framework [176] for task-oriented dialogue systems.

1In this work, lexical variation is not taken into account; instead, categories are identified through
a fixed vocabulary.
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Figure 6.3. The simulated environment for interactive semantic attributes acquisition.
The left block shows the labels available within the dataset; the grid map in the center
emulates the environment in which the robot is moving, where green cells refer to correctly
recognized objects, red cells are the objects that have not been already discovered, while
the orange cell is the targeted object; on the right, the dialogue flow and the images of
the targeted object are shown

Hence, the overall performance of the policy executed by the robot takes into account
both the task success (classification accuracy) and cost (the tutoring effort within
dialogues). As the ultimate goal of the work is the minimization of the tutoring
cost, the cost will deserve a special attention when analyzing the results. However,
the system in the experiment is required to achieve and retain a better trade-off
between the accuracy and the cost through an interactive learning period. More
details about these metrics are described below.

Local Accuracy. The Local Accuracy is the metrics used to evaluate the per-
formance of the visual classifier and, in turn, to assess its reliability in predicting
objects’ category. To this end, the learning performance of the classifier has been
measured using visual instances which may have been seen in previous learning
steps. Hence, the system is able to self-test on objects that it has seen before, as
its learning progresses. To this respect, the Local Accuracy (Accloc) of the i-th bin
is computed at the end of the bin using the initial predictions obtained for each
instance during the processing of the bin. It is worth noting that such procedure is
applicable only whenever online learning schemes are applied, as it measures the
performance of the partial models, that are not available in batch learning.

However, even though such a procedure might result counterintuitive, it represents
one of the novelties and deserves a more detailed explanation. Operationally, as
sketched in Figure 6.4, for each instance in the dataset, the prediction from the
visual classifier is obtained and if the prediction is correct, the True Positives (TP)
are increased by 1, otherwise the instance is learned. When the nB instances of the
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Figure 6.4. Local Accuracy evaluation

Action Cinf Cack/reject Ccrt
Cost 5/0 0.5 5/0

Table 6.2. Table of Costs to the Human tutor within Conversation

bin have been processed, the Local Accuracy is evaluated as follows

Accloc = TP

nB
(6.6)

and the TP value is reset. In this way, the evaluation score obtained after each bin
is not biased by the training data. In fact, the prediction of each object is made with
the model acquired so far and the object is learned only if the prediction is wrong.

Cumulative Tutoring Cost. As already outlined by the PARADISE framework
proposed in [176], the performance of a dialogue system is also a function of a
combination of cost measures. Intuitively, cost measures are calculated on the
basis of any user or agent dialogue turns. Skočaj et al. [152] pointed out that a
comprehensive system should be able to learn as autonomously as possible, rather
than involving the human tutor too frequently.

Hence, the Cumulative Tutoring Cost (or simply Cost) is applied to reflect the
effort needed by a human tutor in interacting with the system/robot. In literature,
a wide range of cost measures have been proposed and exploited. Given the learning
task, there are four possible costs that the tutor might incur in, as defined below
(and summarized in Table 6.2):

• Cinf (Inform) refers to the cost of the tutor providing information on the
name of the specific visual instance (e.g., “this is a shampoo bottle”); it may be
either 5 or 0, depending on whether the dialogue act is present or not within
the sentence;

• Cack (Acknowledgment) is the cost for a simple confirmation (like “yes”,
“right”); it is set to be 0.5;
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• Creject (Rejection) is the cost for a simple rejection (such as “no”, “it is
wrong”); it is set to be 0.5;

• Ccrt (Correction) is the cost of correction of a statement/polar question (e.g.,
“no, it is an apple”); it is also set to be either 5 or 0.

The cumulative cost is evaluated as sums of these action-costs across all dialogues

Cost =
∑
i=0

Ciinf +
∑
j=0

Cjack +
∑
k=0

Ckreject +
∑
l=0

C lcrt (6.7)

where a single dialogue is considered as the interaction required to acquire a single
visual instance.

6.3.2. Visual Object Dataset
The proposed system has been evaluated over the Washington RGB-D Object
Dataset [99]. This dataset is acquired using a Kinect-like sensor and consists of 300
household objects organized into 51 categories. For each object, video sequences of
full 360◦ rotations at three different heights of the sensor are available. In addition,
the dataset is provided with cropped versions of the objects and binary masks which
aid in pre-processing the images. However, cropping and segmentation are outside
the scope of this work and are assumed to be available in a full system implemented
on a robotic platform.

The particular nature of this dataset, i.e., the sensor used and the acquisition
setup, allows to simulate a real interactive scenario, where a robot is able to
obtain different sequential views of the same object. Moreover, in order to reduce
randomness, the size of the dataset has been reduced by considering only 120
random images per object. Therefore, the models are trained on a random subset
that accounted for 50% of the images and tested on a random subset that accounted
for 25% of the images. This allowed us to speed up the learning process as well as
to increase the degree of overlap between train and test subsets. Even though this
overlap might result unfair in terms of performance evaluation, it is worth reminding
that (i) the focus of this approach is not the visual classification itself, but the
minimization of the tutoring cost, and (ii) this setup allows to reproduce a real
situation, where the robot might encounter the same object more than once.

6.3.3. User Simulation for the Learning Task
In order to train and evaluate the dialogue agent, a user simulation was required; it
resembles human behaviors on the task of teaching visual objects using a generic n-
gram framework (see [186]). The simulated tutor is trained on a collection of synthetic
dialogues (see dialogue examples in Table 6.1). Once the statistical distribution
of the data is acquired, the user’s action (e.g., Inform, Negotiation, Rejects,
. . . ) is predicted probabilistically. This simulation framework takes as input the
sequence of N most recent words in the dialogue, as well as some optional additional
conditions, and then outputs the next user response on multiple levels as required
(e.g., full utterance, a sequence of dialogue actions, or even a sequence of single
word outputs for incremental dialogue behavior). In this work, an action-based user
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Dialogue Example (a) Dialogue Example (b)
L: what is this object called?
T: an apple
L: okay, apple
T: good job.

L: this is a shampoo, right?
T: no, it is not shampoo, it is a cereal box.
L: okay, got it.

Table 6.3. Example Conversations between the RL-based Learning Agent (L) and the
Simulated User (T): (a) Learner with low confidence (b) Learner with higher confidence.

model was created, able to predict the next user response in a sequence of dialogue
actions. The simulator then produces a full utterance by following the statistics of
utterance templates for each predicted action.

6.4. Results and Discussion
Several empirical evaluations aimed at determining the effectiveness of the adaptive-
threshold MDP and the applicability of the approach in real scenarios.

The policies have been trained for 5000 episodes on a dataset of 48 instances,
distributed over 10 classes randomly drawn from the Washington RGB-D Object
Dataset. The instances were grouped in bins with nB = 8 objects each. Table 6.3
provides exemplifying interactions between the learned RL agent and the simulated
user, showing how the learner, in order to minimize the cost, favors to take the
initiative. The Burlap RL library [109] has been adopted to model the MDPs and
learn the policies. In particular, the State-Action–Reward-State-Action (SARSA)
algorithm [157] is used to learn the both the policies, with a greedy exploration
rate of 0.1 and a discount factor of 1 (for more information about SARSA and its
hyper-parameters, see Appendix A.1.2).

In order to prove the effectiveness of the policies over unseen objects, we tested
them on a dataset of 25 classes (143 instances), where the overlap with the training
set is minimal, repeating the experiment for 10 folds. The size of the bins was
nB = 9. In our scenario, the robot keeps navigating the environment, so after a
while, it may reach an object that it has already seen before. To simulate this,
we replicated the number of instances by 2, randomly shuffling the dataset, both
when training and testing the policies. Hence, for example, the instance apple_2
(belonging to the apple category) will be processed twice.

In Figure 6.5 the plots obtained from the experiments are reported. Results
are provided in terms of Local Accuracy (Figure 6.5(a)) and Cumulative Tutoring
Cost (Figure 6.5(b)). In such analysis, three different approaches for adjusting the
confidence threshold have been compared.

The first setting applies a Fixed threshold (FT) set to 1. This is the baseline,
where the robot keeps asking questions, as the classifier outcomes are always less
than (or equal) to 1. The second setting relies on a Rule-based adaptive threshold
policy (RT ) to adjust the threshold. This hand-crafted policy modifies the threshold
as follows: whenever the ∆Accloc is positive, the threshold is decreased by 0.02;
conversely, if the ∆Accloc is negative, it is increased by 0.02; otherwise, it is not
modified. Finally, the proposed policy, acquired through the approach described so
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Figure 6.5. Results of the experimental evaluation, provided in terms of Local Accuracy
(left) and Cumulative Tutoring Cost (right), along with 95% Confidence Intervals.
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far (RL-based adaptive threshold, or RLT ), has been evaluated.
ANOVA test is performed to evaluate the significance of the different settings

for Accloc and Cost. The outcomes suggest that there are no significant differences
in the local accuracy under the three different threshold conditions. However, this
is not true for the Cost, where the p-value is p < 1× 10−14. The ANOVA results
are confirmed by a post-hoc pairwise comparison over the Cost, performed through
t-tests. The outcomes show that the RLT policy has significantly less tutoring cost
than the others, namely the FT (p < 4× 10−14) and the RT policies (p < 0.006).

As expected, in the first setting, the Cost is represented by a straight line, as
the learner applies the same dialogue pattern for all the interactions. Since the
user always provides a label for the given object, it is plausible to expect a better
Accloc curve. Instead, it seems that this metric is affected by noise: even though
the classes are well represented within the LB-SOINN model, the learner keeps
updating the network by injecting unnecessary examples. The RT policy seems to
get acceptable results, as (i) the tutoring cost tends to decrease as more objects
are processed, while (ii) the accuracy is not degraded. However, the RLT setting
seems to outperform the other techniques. In fact, the Cost is always minimized
and most importantly, starts to decrease from the very beginning of the process, i.e.,
the threshold is decreased as soon as the robot starts to trust the classifier. This
behavior is essential, as the benefits of the RL-based threshold would be perceived
even after a few interactions. At the same time, the Accloc curve seems to follow the
same trend as the other settings, suggesting that the tutoring cost can be minimized
without loss in accuracy. Nevertheless, once a considerable number of classes is
acquired, the confidence values provided by the visual classifier are lower than in
the early stages, due to a higher internal uncertainty of the network. Hence, even
though the prediction for an instance is correct, but with a low confidence score, the
threshold does not have the chance to decrease further since its lower bound is set
to 90 (a conservative solution for the classifier trust). As a consequence, the Cost
stops decreasing and the corresponding curve appears as a straight line.

6.5. Demonstration on Real Robot
In order to support the effectiveness of the proposed approach, the system has been
deployed on a real robot for some preliminary tests. The targeted platform is a
modified version of the Turtlebot 2 Robot2 (Figure 6.6). While the base has not been
modified, the structure on top is customized, in order to make the robot taller with
respect to the off-the-shelf version. The robot is 107 cm high and features a tablet as
an interface for the interactions. In fact, the Automatic Speech Recognition (ASR)
module has been realized through the Google Speech APIs [78], available within the
Android environment, in an ad-hoc mobile application. The robot has been equipped
with the Asus Xtion Pro Live RGB-D camera. Though the nature of the resulting
dataset is still the same as in the simulated scenario (for each shot, RGB and depth
images are taken), the presence of a textured background and the hand holding
the object might interfere with the learning process (segmentation and cropping of
the object are outside the scope of the work). The robot was teleoperated by the

2http://www.turtlebot.com/turtlebot2/

http://www.turtlebot.com/turtlebot2/
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Figure 6.6. The robot used in the real scenario demonstration

user. In fact, as it was not able to autonomously detect the presence of an object
in front of the camera, it was forced to capture 30 RGB-D images on command by
the user, i.e., by pressing a button on the joystick controller. Then, the pipeline
proceeds as in the simulated experiment. Even though the performance has not
been quantitatively measured, the system behaves as expected, minimizing the effort
needed by the human in instructing the robot to acquire new objects. Hence, this
further demonstration provides a preliminary evidence of the effectiveness of the
proposed solution.

6.6. Contributions
This chapter focused on the problem of acquiring a dialogue policy to support
interactive semantic mapping, with the goal of minimizing the users’ tutoring cost.
To this end, the project described in this section of this thesis proposed a multi-
objective MDP Dialogue Manager, where the optimization problem is solved through
RL and the interaction is made dependent on contextual visual information. In
fact, while one MDP is devoted to the selection of the proper Dialogue Act, the
other one modifies the level of trust in visual information. The latter is provided
by an online visual classifier, based on a LB-SOINN. The benefits introduced by
the adaptive threshold MDP have been evaluated through simulated empirical
investigations that confirmed our initial hypothesis.

To sum up, the contributions of this chapter are: (i) the definition of a multi-
objective RL framework for the acquisition of semantic attributes of objects populat-
ing the operating environment, (ii) the systematic exploitation of contextual visual
information, encoded as images of the targeted object, through a comprehensive
Machine Learning (ML) architecture that is able to provide guesses to the dialogue
manager with the aim of minimizing the tutoring cost, (iii) the definition of a
dedicated MDP, for controlling the reliability level of the visual classifier, and (iv) a
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quantitative analysis of the impact of such contextual information in minimizing the
tutoring cost.

The findings of this chapter are a further yet solid proof that perceivable context
has a key role in situated Spoken Human-Robot Interaction (SHRI) tasks. In fact,
through the use of such a knowledge, it is possible to design spoken DMs for robots
like Roy, that are able to achieve their goal with a proper trade-off between autonomy
and users’ help.
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Chapter 7

Conclusion and Discussion

This chapter concludes this dissertation and provides some remarks for the design and
development of future robotic platforms interacting with humans in spoken language.
In order to frame this thesis within the literature, in the following, a summary of
each chapter is reported and the corresponding contributions highlighted.

7.1. Summary of Contributions
The goal of this thesis is to assess to what extent contextual knowledge can be
exploited to improve the interactive behavior of robots in Human-Robot Interaction
(HRI) tasks.

This thesis is motivated by the fact that in situated scenarios humans and robots
make references to the environment; context is thus a valuable resource of knowledge
that needs to be accounted to enable effective HRIs.

In order to define the boundaries of this research and frame the contributions
within the literature, it is thus required to:

• identify a specific interaction modality to be leveraged in HRI,

• identify specific HRI problems where the interplay between the targeted
interaction modality and context is expected to have an impact, and

• define different expressions of contextual knowledge with respect to both the
individual HRI problem and the accounted interaction modality.

Since service robots are expected to efficiently interact with people, we focus
on the humans’ preferred vehicle of communication: Natural Language (NL). NL
is expressive and efficient and enables natural communication. We call Spoken
Human-Robot Interaction (SHRI), the specific sub-field of HRI where the interaction
takes place through NL.

Hence, we focus on tasks where NL plays a key role. One of the most interesting
paradigms in the range of HRI is represented by Symbiotic Autonomy, where humans
and robots interact to help each other in achieving tasks. We thus aim at exploring
all the directions of such a paradigm: the scenario in which the robot needs help,
the situation where the human needs help and the case where the collaboration
between the two actors is beneficial to accomplish a common task. In each of the
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above scenarios, we identify issues and flaws that might be potentially overcome by a
proper adoption of contextual knowledge. Hence, we first investigate to what extent
the operational context introduces biases on the willingness of people in helping a
robot to achieve its tasks. Then, we move to the problem of interpreting robotic
commands in NL, improving the accuracy of the speech recognition process and
solving language ambiguities through contextual knowledge about the domain and
the specific Semantic Map. Finally, we explore how context may improve the dialogic
interaction experience in a collaborative task, where the user instructs the robot to
fill missing information of the Semantic Map.

Figure 7.1 recalls the role of the context in Situated SHRI, associating each
contribution to the corresponding chapter and publications.

In the following, a brief recap of each contribution is provided.

7.1.1. Chapter 3: The Role of Context in Robot Behavior
Modeling

This chapter focuses on evaluating the willingness of human in helping a robot,
in the context of Symbiotic Autonomy. In this specific HRI scenario, robots ask
humans for help, provided that robots exhibit proper social behaviors. To this end,
we run two user studies to assess the contextual factors that may influence such
Collaboration Attitude, gleaning from observable characteristics of the operating
environment. In particular, Proxemics and Gender seem to have a strong influence
on the users’ attitude towards collaborating, where the Personal space of the user
occupied by the robot seems to be the most comfortable one. On the other hand,
our experimental data allow supporting the claim that females are more inclined to
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collaborate. Instead, humans’ Height needs to be further analyzed, in relation to
the robot’s size. Conversely, the Operational Environment, where the interaction
takes place, and the Activity, that users are performing during the interaction, do
not seem to impact on the Collaboration Attitude of humans. In conclusion, the
overall study provides some insights on the contextual factors possibly influencing
the Collaboration Attitude, that may help creating guidelines for designing robots’
behavior.

Open Problems and Future Directions. This study focuses on a small subset
of contextual factors influencing the willingness of users towards collaborating with
a robotic platform. Nevertheless, a vast plethora of other factors are expected
to influence the Collaboration Attitude of the users in the context of Symbiotic
Autonomy and these factors are worth to be identified. For example, how the
Collaboration Attitude varies between interactions within small groups of people
and interactions with individuals, and how participants are influenced by different
appearances or structures of the robot might be valuable subjects for the research
on the design of robots’ behaviors.

7.1.2. Chapter 4: The Role of Context in Speech Recognition
This chapter introduces a practical yet robust approach for improving the recognition
capabilities of a generic Automatic Speech Recognition (ASR) when applied to a
specific domain. In fact, starting from our need of interpreting robotic commands in
the context of SHRI, we design a technique that takes into account domain-specific
evidence to re-rank the transcriptions hypothesized by the ASR. In particular, a
cost is assigned to each ASR transcription, that decreases along with the number
of constraints satisfied by the sentence with respect to adopted grammar. The
constraints are imposed by a grammar, designed to parse NL robotic commands.
Experimental results show that, in spite of the simplicity of the proposed technique,
it allows to significantly improve the performance of an open-domain ASR system,
suggesting that the approach could be potentially applied to a real scenario.

Open Problems and Future Directions. This simple method could be jointly
used with supervised learning methods, exploiting both pure linguistic features
and evidence derived from the grammar, to learn more expressive re-ranking func-
tions. Moreover, future works might consider re-ranking strategies over lists of
interpretations, rather than hypotheses.

7.1.3. Chapter 5: The Role of Context in Language Modeling
This chapter presents a framework for the interpretation of robotic commands, in
the context of SHRI. The Machine Learning (ML) processes underlying the system
are designed to consider both linguistic observations of the sentence, as well as
spatial and semantic information of the operating environment, extracted from a
Semantic Map. This allows producing interpretations that are coherent with the
environment and motivated by the operational context. Moreover, the logic forms
corresponding to the meaning of commands are compliant with Frame Semantics, a
well-established theory of linguistic meaning. The ML framework is implemented as
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a cascade of Hidden Markov Support Vector Machines (SVMhmms) classifiers, each
of which focused on a specific sub-problem of the whole interpretation process.

In order to adopt such a ML technique, we develop a corpus of annotated robotic
commands, Human-Robot Interaction Corpus (HuRIC), to successfully train and
test the language understanding framework. This corpus, originally composed by
examples in English, has been improved by collecting also a subset of examples in
Italian, and by pairing each command with its corresponding Semantic Map.

Experimental evaluations prove the effectiveness of the proposed solution, pro-
viding outstanding accuracy over two languages, i.e., English and Italian. Moreover,
the outcomes prove the effect of contextual features extracted from the Semantic
Map, which contributed, to a different extent, to the improvement of each sub-task.

Open Problems and Future Directions. Further effort is required to keep
improving the process, starting from an extension of HuRIC with additional sentences,
thus providing a wider coverage of the addressed linguistic phenomena, and including
even more semantic features, in order to tighten even more the interpretation of
the sentence to the operational environment. Future research will also focus on the
extension of the proposed methodology, for example by considering more fine-grained
spatial relations between entities in the environment or their physical characteristics,
such as their color, in the grounding function. Furthermore, the same information
may be encoded in a Deep Learning framework, to exploit the full power of such
learning techniques.

In conclusion, the proposed solution can support further and more challenging
research topics in the context of SHRI, such as interactive question answering or
dialogue with robots.

7.1.4. Chapter 6: The Role of Context in Dialogue Modeling

This chapter addresses the problem of acquiring dialogue policies to support robot
teaching tasks, for the minimization of the users’ tutoring cost. The approach is based
on a Dialogue Manager (DM) designed as a multi-objective Markov Decision Process
(MDP), where the optimization problem is solved through Reinforcement Learning
(RL) and the interaction is made dependent on contextual visual information.
In fact, while a first MDP is used to predict the proper sentence the robot is supposed
to utter, a second MDP modifies the trust towards visual context. Such information
allows the robot to make predictions about the semantic properties to be acquired,
relieving the user of further dialogic interactions. The visual classifier is implemented
through an online incremental technique, based on Load-Balancing Self-Organizing
Incremental Neural Network (LB-SOINN).

The experimental evaluation shows the effectiveness of the proposed solution,
providing an empirical proof of the benefits introduced by the adaptive threshold
MDP in minimizing the users’ tutoring cost.

Open Problems and Future Directions. This work represents a starting point
for a future line of research. First, the proposed online scheme, as well as its real-time
processing, allows for a preliminary deployment of such system in a real scenario.
This will enable a thorough evaluation of a real robot interacting with real users.
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Second, the investigation of more accurate metrics to evaluate the reliability of the
visual classifier (e.g., entropy, robustness, . . . ) could be beneficial for the policy
acquisition. Finally, though the focus is on the category of an object, a larger set of
semantic properties could also be taken into account (e.g., attributes such as color,
affordances, . . . ), to fill all the missing information of a complete semantic map.
To this end, different and more suited MDP design patterns can be explored and
evaluated.

7.2. Thesis Statement and Final Remarks
This thesis explores the role of the context in SHRI, arguing that:

1. the interplay between context and interaction in NL is motivated by different
reasons, generating different forms of contextual knowledge;

2. different forms of contextual knowledge can be exploited to improve the
individual SHRI sub-tasks.

In fact, due to the context-aware nature of interactions, we proved that all the
involved processes must take into account the operational context, in order to
mimic humans cognitive processes. Such a claim is supported by the analysis of
different expressions of context, applied to different SHRI tasks. In fact, context is
expressed in different forms, that depend on the addressed task. Through extensive
experimental evaluations it has been possible to prove the benefits brought by the
proper use of context within the different tasks.





109

Bibliography

[1] Luigia Carlucci Aiello, Emanuele Bastianelli, Luca Iocchi, Daniele Nardi,
Vittorio Perera, and Gabriele Randelli. Knowledgeable talking robots. In
Artificial General Intelligence - 6th International Conference, AGI 2013, Bei-
jing, China, July 31 - August 3, 2013 Proceedings, pages 182–191, 2013. doi:
10.1007/978-3-642-39521-5_21. (Cited on page 45.)

[2] Takako Aikawa, Chris Quirk, and Lee Schwartz. Learning prepositional
attachment from sentence aligned bilingual corpora. Association for Machine
Translation in the Americas, September 2003. (Cited on page 55.)

[3] Alyssa Alcorn, Helen Pain, Gnanathusharan Rajendran, Tim Smith, Oliver
Lemon, Kaska Porayska-Pomsta, Mary Ellen Foster, Katerina Avramides,
Christopher Frauenberger, and Sara Bernardini. Social communication between
virtual characters and children with autism. In Gautam Biswas, Susan Bull,
Judy Kay, and Antonija Mitrovic, editors, Artificial Intelligence in Education,
pages 7–14, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-
642-21869-9. (Cited on page 16.)

[4] M Alomari, P Duckworth, M Hawasly, DC Hogg, and AG Cohn. Natural lan-
guage grounding and grammar induction for robotic manipulation commands,
August 2017. (Cited on page 53.)

[5] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector
machines. In Proceedings of the International Conference on Machine Learning,
2003. (Cited on pages 60 and 145.)

[6] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley framenet
project. In Proceedings of ACL and COLING, pages 86–90, 1998. (Cited on
pages 57 and 71.)

[7] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,
Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. Abstract meaning representation for sembanking. In Proceedings
of the 7th Linguistic Annotation Workshop and Interoperability with Discourse,
pages 178–186, Sofia, Bulgaria, August 2013. (Cited on page 81.)

[8] Mohit Bansal, Cynthia Matuszek, Jacob Andreas, Yoav Artzi, and Yonatan
Bisk, editors. Proceedings of the First Workshop on Language Grounding
for Robotics. Association for Computational Linguistics, Vancouver, Canada,
August 2017. (Cited on page 52.)



110 Bibliography

[9] Roberto Basili and Fabio Massimo Zanzotto. Parsing engineering and empirical
robustness. Nat. Lang. Eng., 8(3):97–120, June 2002. ISSN 1351-3249. doi:
10.1017/S1351324902002875. (Cited on page 81.)

[10] Roberto Basili, Emanuele Bastianelli, Giuseppe Castellucci, Daniele Nardi, and
Vittorio Perera. Kernel-based discriminative re-ranking for spoken command
understanding in hri. In Matteo Baldoni, Cristina Baroglio, Guido Boella, and
Roberto Micalizio, editors, AI*IA 2013: Advances in Artificial Intelligence,
pages 169–180, Cham, 2013. Springer International Publishing. ISBN 978-3-
319-03524-6. (Cited on page 81.)

[11] E. Bastianelli, D.D. Bloisi, R. Capobianco, F. Cossu, G. Gemignani, L. Iocchi,
and D. Nardi. On-line semantic mapping. In Advanced Robotics (ICAR), 2013
16th International Conference on, pages 1–6, Nov 2013. doi: 10.1109/ICAR.
2013.6766501. (Cited on page 17.)

[12] Emanuele Bastianelli, Giuseppe Castellucci, Danilo Croce, Roberto Basili,
and Daniele Nardi. Effective and robust natural language understanding for
human-robot interaction. In Proceedings of ECAI 2014. IOS Press, 2014. doi:
10.3233/978-1-61499-419-0-57. (Cited on page 57.)

[13] Emanuele Bastianelli, Giuseppe Castellucci, Danilo Croce, Roberto Basili, and
Daniele Nardi. Huric: a human robot interaction corpus. In Proceedings of
LREC 2014, Reykjavik, Iceland, may 2014. (Cited on pages 40, 71, and 75.)

[14] Emanuele Bastianelli, Danilo Croce, Roberto Basili, and Daniele Nardi. Using
semantic models for robust natural language human robot interaction. In
AI* IA 2015, Advances in Artificial Intelligence, pages 343–356. Springer
International Publishing, 2015. (Cited on pages 59 and 60.)

[15] Emanuele Bastianelli, Danilo Croce, Roberto Basili, and Daniele Nardi. Using
semantic maps for robust natural language interaction with robots. In Sixteenth
Annual Conference of the International Speech Communication Association,
pages 1393–1397. International Speech Communication Association, 2015.
(Cited on pages xv, 41, 47, and 48.)

[16] Emanuele Bastianelli, Daniele Nardi, Luigia Carlucci Aiello, Fabrizio Gia-
comelli, and Nicolamaria Manes. Speaky for robots: the development of vocal
interfaces for robotic applications. Applied Intelligence, 44(1):43–66, 2015.
ISSN 1573-7497. (Cited on pages 42, 44, and 45.)

[17] Emanuele Bastianelli, Danilo Croce, Andrea Vanzo, Roberto Basili, and Daniele
Nardi. A discriminative approach to grounded spoken language understanding
in interactive robotics. In Subbarao Kambhampati, editor, Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016, IJCAI’16, pages 2747–2753, New
York, New York, USA, July 2016. IJCAI/AAAI Press. (Cited on pages 60, 65,
69, 83, and 104.)

[18] Emanuele Bastianelli, Danilo Croce, Andrea Vanzo, Roberto Basili, and Daniele
Nardi. Perceptually informed spoken language understanding for service
robotics. In Proceedings of the IJCAI2016 Workshop on Autonomous Mobile
Service Robots, New York City, US, 2016. (Cited on pages 75 and 104.)



Bibliography 111

[19] Emanuele Bastianelli, Giuseppe Castellucci, Danilo Croce, Roberto Basili,
and Daniele Nardi. Structured learning for spoken language understanding in
human-robot interaction. The International Journal of Robotics Research, 36
(5-7):660–683, 2017. doi: 10.1177/0278364917691112. (Cited on page 57.)

[20] Richard Bellman. A markovian decision process. Journal of Mathematics
and Mechanics, 6(5):679–684, 1957. URL http://www.jstor.org/stable/
24900506. (Cited on page 146.)

[21] Richard Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, USA, 1 edition, 1957. (Cited on page 148.)

[22] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A
neural probabilistic language model. J. Mach. Learn. Res., 3:1137–1155, March
2003. ISSN 1532-4435. (Cited on page 153.)

[23] Yevgeni Berzak, Andrei Barbu, Daniel Harari, Boris Katz, and Shimon Ullman.
Do you see what I mean? visual resolution of linguistic ambiguities. CoRR,
abs/1603.08079, 2016. (Cited on page 53.)

[24] Johan Bos and Tetsushi Oka. A spoken language interface with a mobile robot.
Artificial Life and Robotics, 11(1):42–47, 2007. (Cited on page 17.)

[25] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004. ISBN 0521833787. (Cited on
page 135.)

[26] Michael Brenner and Ivana Kruijff-Korbayová. A continual multiagent plan-
ning approach to situated dialogue. Semantics and Pragmatics of Dialogue
(LONDIAL), page 61, 2008. (Cited on page 18.)

[27] E. Brunskill, T. Kollar, and N. Roy. Topological mapping using spectral
clustering and classification. In 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3491–3496, October 2007. (Cited on
page 86.)

[28] P. Buschka and A. Saffiotti. A virtual sensor for room detection. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 1, pages
637–642, 2002. (Cited on pages 22 and 86.)

[29] Roberto Capobianco, Jacopo Serafin, Johann Dichtl, Giorgio Grisetti, Luca
Iocchi, and Daniele Nardi. A proposal for semantic map representation and
evaluation. In Mobile Robots (ECMR), 2015 European Conference on, pages
1–6. IEEE, 2015. (Cited on page 19.)

[30] Roberto Capobianco, Guglielmo Gemignani, Luca Iocchi, Daniele Nardi,
Francesco Riccio, and Andrea Vanzo. Contexts for symbiotic autonomy:
Semantic mapping, task teaching and social robotics. In Jeffrey O. Kephart,
Stephanie Rosenthal, Manuela M. Veloso, and Alex Rudnicky, editors, Sym-
biotic Cognitive Systems, Papers from the 2016 AAAI Workshop, Phoenix,
Arizona, USA, February 13, 2016., volume WS-16-14 of AAAI Workshops,
pages 733–736, Phoenix, Arizona, USA, February 2016. AAAI Press. (Cited on
page 104.)

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506


112 Bibliography

[31] S. Chandra, P. Alves-Oliveira, S. Lemaignan, P. Sequeira, A. Paiva, and
P. Dillenbourg. Can a child feel responsible for another in the presence of a
robot in a collaborative learning activity? In 2015 24th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN),
pages 167–172, Aug 2015. doi: 10.1109/ROMAN.2015.7333678. (Cited on
page 16.)

[32] C. Chelba, Peng Xu, F. Pereira, and T. Richardson. Distributed acoustic
modeling with back-off n-grams. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 4129–4132, Mar
2012. doi: 10.1109/ICASSP.2012.6288827. (Cited on page 46.)

[33] David L. Chen and Raymond J. Mooney. Learning to interpret natural language
navigation instructions from observations. In Proceedings of the 25th AAAI
Conference on AI, pages 859–865, 2011. (Cited on pages 17 and 57.)

[34] Gordon Christie, Ankit Laddha, Aishwarya Agrawal, Stanislaw Antol, Yash
Goyal, Kevin Kochersberger, and Dhruv Batra. Resolving vision and language
ambiguities together: Joint segmentation & prepositional attachment resolution
in captioned scenes. Computer Vision and Image Understanding, 163:101 –
112, 2017. ISSN 1077-3142. Language in Vision. (Cited on page 53.)

[35] Kenneth Church and Ramesh Patil. Coping with syntactic ambiguity or how
to put the block in the box on the table. Computational Linguistics, 8(3-4):
139–149, July 1982. ISSN 0891-2017. (Cited on page 55.)

[36] Herbert H. Clark and Susan E. Brennan. Grounding in communication. In
Lauren Resnick, Levine B., M. John, Stephanie Teasley, and D., editors, Per-
spectives on Socially Shared Cognition, pages 13–1991. American Psychological
Association, 1991. (Cited on pages 2 and 6.)

[37] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings
of the 25th International Conference on Machine Learning, ICML ’08, pages
160–167, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi:
10.1145/1390156.1390177. (Cited on page 153.)

[38] Silvia Coradeschi and Alessandro Saffiotti. Symbiotic robotic systems: Humans,
robots, and smart environments. Intelligent Systems, IEEE, 21(3):82–84, 2006.
(Cited on pages 22 and 26.)

[39] K. Crammer and Y. Singer. On the algorithmic implementation of multi-class
svms. Journal of Machine Learning Research, 2:265–292, 2001. (Cited on
page 145.)

[40] Maartje M.A. de Graaf and Somaya Ben Allouch. Expectation setting and per-
sonality attribution in hri. In Proceedings of the 2014 ACM/IEEE International
Conference on Human-robot Interaction, HRI ’14, pages 144–145, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2658-2. doi: 10.1145/2559636.2559796.
URL http://doi.acm.org/10.1145/2559636.2559796. (Cited on page 37.)

http://doi.acm.org/10.1145/2559636.2559796


Bibliography 113

[41] Albert Diosi, Geoffrey R. Taylor, and Lindsay Kleeman. Interactive SLAM
using laser and advanced sonar. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, ICRA 2005, April 18-22, 2005,
Barcelona, Spain, pages 1103–1108, 2005. (Cited on page 56.)

[42] Masrur Doostdar, Stefan Schiffer, and Gerhard Lakemeyer. RoboCup 2008:
Robot Soccer World Cup XII, chapter A Robust Speech Recognition System for
Service-Robotics Applications, pages 1–12. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. ISBN 978-3-642-02921-9. doi: 10.1007/978-3-642-02921-9_1.
(Cited on page 41.)

[43] T. M. Ellison. CoNLL97 : Computational Natural Language Learning: Pro-
ceedings of the 1997 Meeting of the ACL Special Interest Group in Natural
Language Learning. Association for Computational Linguistics, 1997. (Cited
on page 129.)

[44] Christoph Engel. Dictator games: a meta study. Experimental Economics, 14:
583–610, 2011. (Cited on pages 5, 7, and 36.)

[45] Daniele Evangelista, Wilson Umberto Villa, Marco Imperoli, Andrea Vanzo,
Luca Iocchi, Daniele Nardi, and Alberto Pretto. Grounding natural language
instructions in industrial robotics. In Proceedings of the IROS 2017 Workshop
"Human-Robot Interaction in Collaborative Manufacturing Environments (HRI-
CME), Vancouver, Canada, September 24, 2017., Vancouver, Canada, 2017.
(Cited on pages 75 and 104.)

[46] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. Liblinear: A library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874, 2008. (Cited on page 61.)

[47] Rui Fang, Changsong Liu, Lanbo She, and Joyce Y Chai. Towards situated
dialogue: Revisiting referring expression generation. In EMNLP, pages 392–402,
2013. (Cited on page 18.)

[48] Rui Fang, Malcolm Doering, and Joyce Y Chai. Collaborative models for
referring expression generation in situated dialogue. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, pages 1544–1550,
2014. (Cited on page 18.)

[49] Juan Fasola and Maja J Matarić. A socially assistive robot exercise coach for
the elderly. J. Hum.-Robot Interact., 2(2):3–32, June 2013. ISSN 2163-0364.
doi: 10.5898/JHRI.2.2.Fasola. (Cited on page 16.)

[50] David Feil-Seifer and Maja Matarić. Ethical principles for socially assistive
robotics. IEEE Robotics and Automation Magazine, 18(1):24–31, March 2011.
doi: 10.1109/MRA.2010.940150. (Cited on page 16.)

[51] Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and Silvia Bernardini.
Introducing and evaluating ukwac, a very large web-derived corpus of english.
In Proceedings of the 4th Web as Corpus Workshop (WAC-4) Can we beat
Google, pages 47–54, 2008. (Cited on page 66.)



114 Bibliography

[52] Simone Filice, Giuseppe Castellucci, Danilo Croce, and Roberto Basili. Kelp: a
kernel-based learning platform for natural language processing. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
(ACL2015): System Demonstrations, Beijing, China, 26-31 July 2015. (Cited
on pages 61, 66, and 81.)

[53] Charles J. Fillmore. Frames and the semantics of understanding. Quaderni di
Semantica, 6(2):222–254, 1985. (Cited on pages 8, 42, 57, and 71.)

[54] Julia Fink, Séverin Lemaignan, Pierre Dillenbourg, Philippe Rétornaz, Florian
Vaussard, Alain Berthoud, Francesco Mondada, Florian Wille, and Karmen
Franinović. Which robot behavior can motivate children to tidy up their toys?:
Design and evaluation of "ranger". In Proceedings of the 2014 ACM/IEEE
International Conference on Human-robot Interaction, HRI ’14, pages 439–446,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2658-2. doi: 10.1145/
2559636.2559659. (Cited on page 16.)

[55] Kerstin Fischer, Stephen Yang, Brian Mok, Rohan Maheshwari, David Sirkin,
and Wendy Ju. Initiating interactions and negotiating approach: A robotic
trash can in the field. In AAAI Symposium on Turn-taking and Coordination
in Human-Machine Interaction, pages 10–16, 2015. (Cited on pages 16 and 26.)

[56] Mary Ellen Foster, Katerina Avramides, Sara Bernardini, Jingying Chen,
Christopher Frauenberger, Oliver Lemon, and Kaska Porayska-Pomsta. Sup-
porting children’s social communication skills through interactive narratives
with virtual characters. In Proceedings of the 18th ACM International Con-
ference on Multimedia, MM ’10, pages 1111–1114, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-933-6. doi: 10.1145/1873951.1874163. URL
http://doi.acm.org/10.1145/1873951.1874163. (Cited on page 16.)

[57] Mary Ellen Foster, Rachid Alami, Olli Gestranius, Oliver Lemon, Marketta
Niemelä, Jean-Marc Odobez, and Amit Kumar Pandey. The MuMMER project:
Engaging human-robot interaction in real-world public spaces. In Proceedings
of the Eighth International Conference on Social Robotics (ICSR 2016), 11
2016. doi: 10.1007/978-3-319-47437-3_74. (Cited on pages 1 and 16.)

[58] Shen Furao and Osamu Hasegawa. An incremental network for on-line un-
supervised classification and topology learning. Neural Netw., 19(1):90–106,
January 2006. ISSN 0893-6080. doi: 10.1016/j.neunet.2005.04.006. URL
http://dx.doi.org/10.1016/j.neunet.2005.04.006. (Cited on page 155.)

[59] Shen Furao, Tomotaka Ogura, and Osamu Hasegawa. An enhanced self-
organizing incremental neural network for online unsupervised learning. Neural
Networks, 20(8):893 – 903, 2007. ISSN 0893-6080. doi: https://doi.org/10.
1016/j.neunet.2007.07.008. (Cited on page 156.)

[60] Cipriano Galindo, Alessandro Saffiotti, Silvia Coradeschi, Pär Buschka, Juan-
Antonio Fernandez-Madrigal, and Javier González. Multi-hierarchical semantic
maps for mobile robotics. In Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on, pages 2278–2283. IEEE,
2005. (Cited on pages 22 and 86.)

http://doi.acm.org/10.1145/1873951.1874163
http://dx.doi.org/10.1016/j.neunet.2005.04.006


Bibliography 115

[61] Qiaozi Gao, Malcolm Doering, Shaohua Yang, and Joyce Yue Chai. Physical
causality of action verbs in grounded language understanding. In ACL (1).
The Association for Computer Linguistics, 2016. ISBN 978-1-945626-00-5.
(Cited on page 53.)

[62] Konstantina Garoufi and Alexander Koller. Automated planning for situated
natural language generation. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, ACL ’10, pages 1573–1582,
Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. (Cited
on page 18.)

[63] Spandana Gella, Mirella Lapata, and Frank Keller. Unsupervised visual sense
disambiguation for verbs using multimodal embeddings. In Proceedings of
the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 182–192.
Association for Computational Linguistics, 2016. doi: 10.18653/v1/N16-1022.
(Cited on page 53.)

[64] Guglielmo Gemignani, Emanuele Bastianelli, and Daniele Nardi. Teaching
robots parametrized executable plans through spoken interaction. In Pro-
ceedings of the 14th International Conference on Autonomous Agents and
Multiagent Systems, 2015. (Cited on page 18.)

[65] Guglielmo Gemignani, Roberto Capobianco, and Daniele Nardi. Approaching
qualitative spatial reasoning about distances and directions in robotics. In
14th Italian Conference on Artificial Intelligence, 2015. (Cited on page 23.)

[66] Guglielmo Gemignani, Steven D. Klee, Manuela Veloso, and Daniele Nardi. On
task recognition and generalization in long-term robot teaching. In Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’15, pages 1879–1880, Richland, SC, 2015. International
Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-
4503-3413-6. (Cited on page 18.)

[67] Guglielmo Gemignani, Roberto Capobianco, Emanuele Bastianelli, Domenico
Bloisi, Luca Iocchi, and Daniele Nardi. Living with robots: Interactive envi-
ronmental knowledge acquisition. Robotics and Autonomous Systems, 78:1–16,
2016. doi: 10.1016/j.robot.2015.11.001. (Cited on pages 22, 23, 53, 56, and 87.)

[68] Nils Goerke and Sven Braun. Building semantic annotated maps by mobile
robots. In Proceedings of the Conference Towards Autonomous Robotic Systems,
pages 149–156, 2009. (Cited on page 86.)

[69] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse
of a matrix. Journal of the Society for Industrial and Applied Mathematics, 2
(2), 1965. (Cited on page 153.)

[70] Barbara Gonsior, Dirk Wollherr, and Martin Buss. Towards a dialog strategy
for handling miscommunication in human-robot dialog. In RO-MAN, pages
264–269. IEEE, 2010. (Cited on page 18.)



116 Bibliography

[71] Barbara Gonsior, Christian Landsiedel, Antonia Glaser, Dirk Wollherr, and
Martin Buss. Dialog strategies for handling miscommunication in task-related
HRI. In RO-MAN, pages 369–375. IEEE, 2011. (Cited on page 18.)

[72] Michael A. Goodrich and Alan C. Schultz. Human-robot interaction: A survey.
Found. Trends Hum.-Comput. Interact., 1(3):203–275, January 2007. ISSN
1551-3955. doi: 10.1561/1100000005. (Cited on page 15.)

[73] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jérôme Mon-
ceaux, Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno Maisonnier.
Mechatronic design of nao humanoid. In Proceedings of the 2009 IEEE Inter-
national Conference on Robotics and Automation, ICRA’09, pages 2124–2129,
Piscataway, NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-2788-8. (Cited on
page 17.)

[74] S. Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena,
42(1-3):335–346, 1990. ISSN 0167-2789. (Cited on page 5.)

[75] Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954. (Cited on
page 151.)

[76] Stefan Heinrich and Stefan Wermter. Towards robust speech recognition
for human-robot interaction. In Proceedings of the IROS2011 Workshop on
Cognitive Neuroscience Robotics (CNR), pages 23–28, Sep 2011. (Cited on
page 41.)

[77] Joachim Hertzberg and Alessandro Saffiotti. Using semantic knowledge in
robotics. Robotics and Autonomous Systems, 56(11):875–877, 2008. (Cited on
pages 22 and 86.)

[78] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling
in speech recognition. Signal Processing Magazine, 2012. (Cited on pages 39
and 99.)

[79] Deanna Hood, Séverin Lemaignan, and Pierre Dillenbourg. When children
teach a robot to write: An autonomous teachable humanoid which uses
simulated handwriting. In Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction, HRI ’15, pages 83–90,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2883-8. doi: 10.1145/
2696454.2696479. (Cited on page 16.)

[80] Andrew Hunt and Scott McGlashan. Speech recognition grammar specification.
Technical report, World Wide Web Consortium, 2004. (Cited on page 45.)

[81] Luca Iocchi, M. T. Lázaro, Laurent Jeanpierre, Abdel-Illah Mouaddib, Esra
Erdem, and Hichem Sahli. Coaches cooperative autonomous robots in complex
and human populated environments. In Marco Gavanelli, Evelina Lamma,
and Fabrizio Riguzzi, editors, AI*IA 2015 Advances in Artificial Intelligence,
pages 465–477, Cham, 2015. Springer International Publishing. ISBN 978-3-
319-24309-2. (Cited on page 1.)



Bibliography 117

[82] Rebecca Jonson. Grammar-based context-specific statistical language mod-
elling. In Proceedings of the Workshop on Grammar-Based Approaches to
Spoken Language Processing, SLP ’07, pages 25–32, Stroudsburg, PA, USA,
2007. (Cited on page 41.)

[83] P. Kankuekul, A. Kawewong, S. Tangruamsub, and O. Hasegawa. Online
incremental attribute-based zero-shot learning. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3657–3664, June 2012. doi:
10.1109/CVPR.2012.6248112. (Cited on page 155.)

[84] F. Kaplan. Talking AIBO: First experimentation of verbal interactions with an
autonomous four-legged robot. In Proceedings of the CELE-Twente workshop
on interacting agents, 2000. (Cited on page 53.)

[85] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi
Osawa. Robocup: The robot world cup initiative. In Proceedings of the First
International Conference on Autonomous Agents, AGENTS ’97, pages 340–347,
New York, NY, USA, 1997. ACM. ISBN 0-89791-877-0. doi: 10.1145/267658.
267738. URL http://doi.acm.org/10.1145/267658.267738. (Cited on pages
1 and 16.)

[86] Kheng Lee Koay, Dag Sverre Syrdal, Mohammadreza Ashgari-Oskoei,
Michael L. Walters, and Kerstin Dautenhahn. Social roles and baseline prox-
emic preferences for a domestic service robot. International Journal of Social
Robotics, 6:469–488, 2014. (Cited on pages 16, 27, and 31.)

[87] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78:
1464–1480, 1990. (Cited on page 89.)

[88] Thomas Kollar, Stefanie Tellex, Deb Roy, and Nicholas Roy. Toward under-
standing natural language directions. In Proceedings of the 5th ACM/IEEE
International Conference on Human-robot Interaction, HRI ’10, pages 259–266,
Piscataway, NJ, USA, 2010. IEEE Press. ISBN 978-1-4244-4893-7. (Cited on
page 17.)

[89] Thomas Kollar, Vittorio Perera, Daniele Nardi, and Manuela M. Veloso.
Learning environmental knowledge from task-based human-robot dialog. In
ICRA, pages 4304–4309. IEEE, 2013. ISBN 978-1-4673-5641-1. (Cited on
page 18.)

[90] Chen Kong, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler.
What are you talking about? text-to-image coreference. In Proceedings of the
2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’14, pages 3558–3565, Washington, DC, USA, 2014. IEEE Computer Society.
ISBN 978-1-4799-5118-5. (Cited on page 53.)

[91] Evan Krause, Michael Zillich, Thomas Williams, and Matthias Scheutz. Learn-
ing to recognize novel objects in one shot through human-robot interactions
in natural language dialogues. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, AAAI’14, pages 2796–2802. AAAI Press,
2014. (Cited on page 155.)

http://doi.acm.org/10.1145/267658.267738


118 Bibliography

[92] Brigitte Krenn and Christer Samuelsson. The linguist’s guide to statistics -
don’t panic, 1997. (Cited on pages 141 and 143.)

[93] Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and
perceive: Connecting natural language to the physical world. TACL, 1:193–
206, 2013. (Cited on page 54.)

[94] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25, pages 1106–1114, 2012. (Cited on page 89.)

[95] Geert-Jan M Kruijff, Hendrik Zender, Patric Jensfelt, and Henrik I Christensen.
Clarification dialogues in human-augmented mapping. In Proceedings of the
1st ACM SIGCHI/SIGART conference on Human-robot interaction, pages
282–289. ACM, 2006. (Cited on pages 18, 23, and 87.)

[96] Geert-Jan M. Kruijff, H. Zender, P. Jensfelt, and Henrik I. Christensen. Situ-
ated dialogue and spatial organization: What, where. . . and why? International
Journal of Advanced Robotic Systems, 4(2), 2007. (Cited on page 17.)

[97] G.M. Kruijff, H. Zender, P. Jensfelt, and H.I. Christensen. Situated dialogue
and understanding spatial organization: Knowing what is where and what
you can do there. In Robot and Human Interactive Communication, 2006.
ROMAN 2006. The 15th IEEE International Symposium on, pages 328–333,
Sept 2006. doi: 10.1109/ROMAN.2006.314438. (Cited on page 17.)

[98] Benjamin Kuipers and Yung-Tai Byun. A robot exploration and mapping
strategy based on a semantic hierarchy of spatial representations. Robotics
and Autonomous Systems, 8:47–63, 1991. (Cited on page 22.)

[99] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view
rgb-d object dataset. In 2011 IEEE International Conference on Robotics and
Automation, pages 1817–1824, May 2011. doi: 10.1109/ICRA.2011.5980382.
(Cited on pages 96 and 155.)

[100] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for
zero-shot visual object categorization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 36(3):453–465, March 2014. ISSN 0162-8828. doi:
10.1109/TPAMI.2013.140. (Cited on page 155.)

[101] T. Landauer and S. Dumais. A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction and representation of knowledge.
Psychological Review, 104(2):211–240, 1997. (Cited on page 153.)

[102] S. Lemaignan, A. Jacq, D. Hood, F. Garcia, A. Paiva, and P. Dillenbourg.
Learning by teaching a robot: The case of handwriting. IEEE Robotics
Automation Magazine, 23(2):56–66, June 2016. ISSN 1070-9932. doi: 10.1109/
MRA.2016.2546700. (Cited on pages 1 and 16.)

[103] M. Levit, S. Chang, and B. Buntschuh. Garbage modeling with decoys for a
sequential recognition scenario. In Automatic Speech Recognition Understand-
ing, 2009. ASRU 2009. IEEE Workshop on, pages 468–473, Nov 2009. doi:
10.1109/ASRU.2009.5372919. (Cited on page 41.)



Bibliography 119

[104] Qiguang Lin, David Lubensky, Michael Picheny, and P. Srinivasa Rao. Key-
phrase spotting using an integrated language model of n-grams and finite-state
grammar. In George Kokkinakis, Nikos Fakotakis, and Evangelos Dermatas,
editors, EUROSPEECH. ISCA, 1997. (Cited on page 41.)

[105] Diego Linares, José-Miguel Benedí, and Joan-Andreu Sánchez. A hybrid
language model based on a combination of n-grams and stochastic context-free
grammars. ACM Transactions on Asian Language Information Processing, 3
(2):113–127, Jun 2004. ISSN 1530-0226. doi: 10.1145/1034780.1034783. (Cited
on page 41.)

[106] Peter Lindes, Aaron Mininger, James R Kirk, and John E Laird. Grounding
language for interactive task learning. In Proceedings of the First Workshop
on Language Grounding for Robotics, pages 1–9, 2017. (Cited on page 52.)

[107] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data. Data-Centric Systems and Applications. Springer, 2007. ISBN 978-3-
540-37881-5. (Cited on page 143.)

[108] Changsong Liu, Jacob Walker, and Joyce Y. Chai. Ambiguities in spatial
language understanding in situated human robot dialogue. In AAAI Fall
Symposium: Dialog with Robots, volume FS-10-05 of AAAI Technical Report.
AAAI, 2010. (Cited on page 18.)

[109] James MacGlashan. Burlap, 2015. URL http://burlap.cs.brown.edu/.
(Cited on page 97.)

[110] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics (ACL) System Demonstrations, pages 55–60,
Baltimore, Maryland, USA, June 22-27 2014. (Cited on page 81.)

[111] Matthew Marge and Alexander I. Rudnicky. Towards overcoming miscommu-
nication in situated dialogue by asking questions. In AAAI Fall Symposium:
Building Representations of Common Ground with Intelligent Agents, volume
FS-11-02 of AAAI Technical Report. AAAI, 2011. (Cited on page 18.)

[112] Matthew Marge and Alexander I. Rudnicky. Miscommunication recovery
in physically situated dialogue. In SIGDIAL Conference, pages 22–31. The
Association for Computer Linguistics, 2015. (Cited on page 18.)

[113] Cynthia Matuszek, Nicholas FitzGerald, Luke S. Zettlemoyer, Liefeng Bo, and
Dieter Fox. A joint model of language and perception for grounded attribute
learning. In ICML. icml.cc / Omnipress, 2012. (Cited on page 54.)

[114] Cynthia Matuszek, Evan Herbst, Luke S. Zettlemoyer, and Dieter Fox. Learning
to parse natural language commands to a robot control system. In Jaydev P.
Desai, Gregory Dudek, Oussama Khatib, and Vijay Kumar, editors, ISER,
volume 88 of Springer Tracts in Advanced Robotics, pages 403–415. Springer,
2012. (Cited on pages 17 and 57.)

http://burlap.cs.brown.edu/


120 Bibliography

[115] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013. (Cited
on pages 53, 66, and 153.)

[116] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, nov 1995. ISSN 0001-0782. doi: 10.1145/219717.219748. (Cited
on pages 75 and 150.)

[117] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997. ISBN 0070428077, 9780070428072. (Cited on page 129.)

[118] N. Mitsunaga, C. Smith, T. Kanda, H. Ishiguro, and N. Hagita. Adapting
robot behavior for human–robot interaction. IEEE Transactions on Robotics,
24:911–916, 2008. (Cited on pages 5, 7, 16, 27, and 32.)

[119] F. Morbini, K. Audhkhasi, R. Artstein, M. Van Segbroeck, K. Sagae, P. Geor-
giou, D.R. Traum, and S. Narayanan. A reranking approach for recognition
and classification of speech input in conversational dialogue systems. In Spoken
Language Technology Workshop (SLT), 2012 IEEE, pages 49–54, Dec 2012.
doi: 10.1109/SLT.2012.6424196. (Cited on page 40.)

[120] O. M. Mozos and W. Burgard. Supervised learning of topological maps
using semantic information extracted from range data. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2772–2777,
October 2006. (Cited on page 86.)

[121] Oscar Martinez Mozos, Hitoshi Mizutani, Ryo Kurazume, and Tsutomu
Hasegawa. Categorization of indoor places using the kinect sensor. Sen-
sors, 12(5):6695–6711, May 2012. (Cited on pages 22 and 86.)

[122] Jonathan Mumm and Bilge Mutlu. Human-robot proxemics: Physical and
psychological distancing in human-robot interaction. In Proceedings of the 6th
International Conference on Human-robot Interaction, HRI ’11, pages 331–338.
ACM, 2011. (Cited on pages 7, 16, 27, 32, and 36.)

[123] Carlos Nieto-Granda, John G Rogers III, Alexander JB Trevor, and Henrik
Christensen. Semantic map partitioning in indoor environments using regional
analysis. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Inter-
national Conference on, pages 1451–1456. IEEE, 2010. (Cited on pages 23
and 87.)

[124] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. Efficient
model learning from joint-action demonstrations for human-robot collaborative
tasks. In Proceedings of the Tenth Annual ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’15, pages 189–196. ACM, 2015. (Cited on
pages 16 and 26.)

[125] A. B. Novikoff. On convergence proofs on perceptrons. In Proceedings of
the Symposium on the Mathematical Theory of Automata, volume 12, pages
615–622, New York, NY, USA, 1962. Polytechnic Institute of Brooklyn. (Cited
on page 134.)



Bibliography 121

[126] Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile
robots. Robot. Auton. Syst., 56(11):915–926, 2008. (Cited on pages 4, 52, 56,
and 86.)

[127] Dejan Pangercic, Moritz Tenorth, Benjamin Pitzer, and Michael Beetz. Se-
mantic object maps for robotic housework - representation, acquisition and
use. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura, Portugal, October, 7–12 2012. (Cited on page 22.)

[128] Jose L. Part and Oliver Lemon. Incremental online learning of objects for
robots operating in real environments. In Joint IEEE International Conference
on Development and Learning and on Epigenetic Robotics (ICDL-EPIROB),
Lisbon, Portugal, September 2017. (Cited on page 89.)

[129] David Paulk, Vangelis Metsis, Christopher McMurrough, and Fillia Makedon.
A supervised learning approach for fast object recognition from rgb-d data.
In Proceedings of the 7th International Conference on PErvasive Technologies
Related to Assistive Environments, PETRA ’14, pages 5:1–5:8, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2746-6. doi: 10.1145/2674396.2674432.
(Cited on page 155.)

[130] Andrzej Pronobis and Patric Jensfelt. Large-scale semantic mapping and
reasoning with heterogeneous modalities. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 3515–3522. IEEE, 2012. (Cited
on pages 18, 23, and 87.)

[131] Leixian Qiao, Xue Li, and Shuqiang Jiang. Rgb-d object recognition from hand-
held object teaching. In Proceedings of the International Conference on Internet
Multimedia Computing and Service, ICIMCS’16, pages 31–34, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4850-8. doi: 10.1145/3007669.3007713.
(Cited on page 155.)

[132] Shaolin Qu and Joyce Yue Chai. Context-based word acquisition for situated
dialogue in a virtual world. Journal of Artificial Intelligence Research, pages
247–277, 2010. (Cited on page 18.)

[133] Gabriele Randelli, Taigo Maria Bonanni, Luca Iocchi, and Daniele Nardi.
Knowledge acquisition through human–robot multimodal interaction. Intelli-
gent Service Robotics, 6(1):19–31, 2013. (Cited on page 23.)

[134] Francesco Riccio, Andrea Vanzo, Valeria Mirabella, Tiziana Catarci, and
Daniele Nardi. Enabling Symbiotic Autonomy in Short-Term Interactions: A
User Study, pages 796–807. Springer International Publishing, 2016. ISBN
978-3-319-47437-3. doi: 10.1007/978-3-319-47437-3\_78. (Cited on pages 7, 25,
and 104.)

[135] Markus Rickert, Mary Ellen Foster, Manuel Giuliani, Tomas By, Giorgio
Panin, and Alois Knoll. Integrating language, vision and action for human
robot dialog systems. In Constantine Stephanidis, editor, Universal Access
in Human-Computer Interaction. Ambient Interaction, pages 987–995, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-73281-5. (Cited
on page 18.)



122 Bibliography

[136] Laurel D. Riek. Wizard of oz studies in hri: A systematic review and new
reporting guidelines. J. Hum.-Robot Interact., 1(1):119–136, july 2012. ISSN
2163-0364. doi: 10.5898/JHRI.1.1.Riek. (Cited on page 30.)

[137] Frank Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–408,
1958. (Cited on page 133.)

[138] Stephanie Rosenthal and Manuela Veloso. Mobile robot planning to seek
help with spatially-situated tasks. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, AAAI’12, pages 2067–2073. AAAI Press,
2012. (Cited on page 27.)

[139] Stephanie Rosenthal, Joydeep Biswas, and Manuela Veloso. An effective
personal mobile robot agent through symbiotic human-robot interaction. In
Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, pages 915–922. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2010. (Cited on pages
22, 26, and 27.)

[140] Robert J Ross and John Bateman. Agency & information state in situated
dialogues: Analysis & computational modelling. DiaHolmia, page 113, 2009.
(Cited on page 18.)

[141] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist
systems. Technical Report TR 166, Cambridge University Engineering Depart-
ment, Cambridge, England, 1994. (Cited on page 149.)

[142] Paul E. Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela M Veloso. Interac-
tive robot task training through dialog and demonstration. In Proceedings of
the ACM/IEEE International Conference on Human-robot Interaction, HRI
’07, pages 49–56, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-617-2.
doi: 10.1145/1228716.1228724. (Cited on page 18.)

[143] Magnus Sahlgren. The Word-Space Model. PhD thesis, Stockholm University,
2006. (Cited on pages 53, 151, and 152.)

[144] Giampiero Salvi and Stéphane Dupont, editors. Proceedings GLU 2017 In-
ternational Workshop on Grounding Language Understanding. Stockholm,
Sweden, August 2017. doi: 10.21437/GLU.2017. (Cited on page 52.)

[145] Matthias Scheutz, Rehj Cantrell, and Paul W. Schermerhorn. Toward human-
like task-based dialogue processing for human robot interaction. AI Magazine,
32(4):77–84, 2011. (Cited on page 18.)

[146] Sven Schneider, Frederik Hegger, Aamir Ahmad, Iman Awaad, Francesco
Amigoni, Jakob Berghofer, Rainer Bischoff, Andrea Bonarini, Rhama Dwiputra,
Giulio Fontana, Luca Iocchi, Gerhard Kraetzschmar, Pedro Lima, Matteo
Matteucci, Daniele Nardi, and Viola Schiaffonati. The rockin@home challenge.
In Proceedings of the 41st International Symposium on Robotics (ISR/Robotik
2014), pages 1–7, Munich, Germany, June 2-3 2014. (Cited on pages 79 and 81.)

[147] Hinrich Schütze. Word space. In Advances in Neural Information Processing
Systems 5, 1993. (Cited on page 151.)



Bibliography 123

[148] Hinrich Schütze and Jan Pedersen. Information retrieval based on word
senses. In Proceedings of the 4th Annual Symposium on Document Analysis
and Information Retrieval, pages 161–175, Las Vegas, USA, 1995. (Cited on
page 151.)

[149] M. Schwarz, H. Schulz, and S. Behnke. Rgb-d object recognition and pose
estimation based on pre-trained convolutional neural network features. In 2015
IEEE International Conference on Robotics and Automation (ICRA), pages
1329–1335, May 2015. doi: 10.1109/ICRA.2015.7139363. (Cited on page 155.)

[150] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, New York, NY, USA, 2004. ISBN 0521813972.
(Cited on page 138.)

[151] Danijel Skočaj, Matej Kristan, Alen Vrečko, Marko Mahnič, Miroslav Janíček,
Geert-Jan M Kruijff, Marc Hanheide, Nick Hawes, Thomas Keller, Michael
Zillich, et al. A system for interactive learning in dialogue with a tutor.
In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, pages 3387–3394. IEEE, 2011. (Cited on pages 22 and 155.)

[152] Danijel Skočaj, Matej Kristan, and Aleš Leonardis. Formalization of different
learning strategies in a continuous learning framework. In Proceedings of the
Ninth International Conference on Epigenetic Robotics; Modeling Cognitive
Development in Robotic Systems, pages 153–160. Lund University Cognitive
Studies, 2009. (Cited on pages 90 and 95.)

[153] Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and
Andrew Y. Ng. Convolutional-recursive deep learning for 3d object classification.
In Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’12, pages 656–664, USA, 2012. Curran
Associates Inc. (Cited on page 155.)

[154] Hyang-gi Song, Michael Restivo, Arnout van de Rijt, Lori L. Scarlatos, David
Tonjes, and Alex Orlov. The hidden gender effect in online collaboration:
An experimental study of team performance under anonymity. Computers in
Human Behavior, 50:274–282, 2015. (Cited on pages 7 and 36.)

[155] Laura Stoia, Darla Magdalene Shockley, Donna K. Byron, and Eric Fosler-
Lussier. Noun phrase generation for situated dialogs. In Proceedings of the
Fourth International Natural Language Generation Conference, INLG ’06,
pages 81–88, Stroudsburg, PA, USA, 2006. Association for Computational
Linguistics. ISBN 1-932432-72-8. (Cited on page 18.)

[156] Andreas Stolcke, Klaus Ries, Noah Coccaro, Elizabeth Shriberg, Rebecca A.
Bates, Daniel Jurafsky, Paul Taylor, Rachel Martin, Carol Van Ess-Dykema,
and Marie Meteer. Dialogue act modeling for automatic tagging and recognition
of conversational speech. CoRR, cs.CL/0006023, 2000. (Cited on page 89.)

[157] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learn-
ing. MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.
(Cited on pages 97, 148, and 149.)



124 Bibliography

[158] D. S. Syrdal, K. Lee Koay, M. L. Walters, and K. Dautenhahn. A personalized
robot companion? - the role of individual differences on spatial preferences
in hri scenarios. In Robot and Human interactive Communication, 2007. RO-
MAN 2007. The 16th IEEE International Symposium on, pages 1143–1148,
Aug 2007. (Cited on pages 7, 27, and 36.)

[159] L. Takayama and C. Pantofaru. Influences on proxemic behaviors in human-
robot interaction. In Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, pages 5495–5502, Oct 2009. (Cited on
pages 16, 27, 32, and 36.)

[160] M. Tanenhaus, M. Spivey-Knowlton, K. Eberhard, and J. Sedivy. Integration
of visual and linguistic information during spoken language comprehension.
Science, 268:1632–1634, 1995. (Cited on pages 3 and 17.)

[161] S. Tellex, T. Kollar, S. Dickerson, M.R. Walter, A.G. Banerjee, S. Teller,
and N. Roy. Approaching the symbol grounding problem with probabilistic
graphical models. AI Magazine, 32(4), 2011. (Cited on pages 17 and 52.)

[162] Jesse Thomason, Shiqi Zhang, Raymond Mooney, and Peter Stone. Learning
to interpret natural language commands through human-robot dialog. In
Proceedings of the 2015 International Joint Conference on Artificial Intelligence
(IJCAI), pages 1923–1929, Buenos Aires, Argentina, July 2015. (Cited on pages
18 and 53.)

[163] Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov, Justin Hart, Peter
Stone, and Raymond J. Mooney. Opportunistic active learning for grounding
natural language descriptions. In Sergey Levine, Vincent Vanhoucke, and Ken
Goldberg, editors, Proceedings of the 1st Annual Conference on Robot Learning,
volume 78 of Proceedings of Machine Learning Research, pages 67–76. PMLR,
13–15 Nov 2017. (Cited on page 87.)

[164] Elena Torta, Raymond H. Cuijpers, and James F. Juola. A model of the
user’s proximity for bayesian inference. In Proceedings of the 6th International
Conference on Human-robot Interaction, HRI ’11, pages 273–274, New York,
NY, USA, 2011. ACM. (Cited on page 31.)

[165] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin
Altun. Support vector machine learning for interdependent and structured
output spaces. In Proceedings of the twenty-first international conference on
Machine learning, ICML ’04, pages 104–, New York, NY, USA, 2004. ACM.
ISBN 1-58113-838-5. (Cited on page 143.)

[166] Andrea Vanzo, Danilo Croce, Roberto Basili, and Daniele Nardi. Context-aware
spoken language understanding for human robot interaction. In Pierpaolo
Basile, Anna Corazza, Franco Cutugno, Simonetta Montemagni, Malvina
Nissim, Viviana Patti, Giovanni Semeraro, and Rachele Sprugnoli, editors,
Proceedings of Third Italian Conference on Computational Linguistics (CLiC-
it 2016) & Fifth Evaluation Campaign of Natural Language Processing and
Speech Tools for Italian. Final Workshop (EVALITA 2016), Napoli, Italy,
December 5-7, 2016., volume 1749 of CEUR Workshop Proceedings, pages



Bibliography 125

308–313, Napoli, Italy, December 2016. CEUR-WS.org. (Cited on pages 60, 83,
and 104.)

[167] Andrea Vanzo, Danilo Croce, Emanuele Bastianelli, Roberto Basili, and Daniele
Nardi. Robust spoken language understanding for house service robots. Polibits,
54:11–16, July 2016. doi: 10.17562/PB-54-2. (Cited on pages 40 and 104.)

[168] Andrea Vanzo, Danilo Croce, Giuseppe Castellucci, Roberto Basili, and Daniele
Nardi. Spoken language understanding for service robotics in italian. In Gio-
vanni Adorni, Stefano Cagnoni, Marco Gori, and Marco Maratea, editors,
AI*IA 2016: Advances in Artificial Intelligence - XVth International Con-
ference of the Italian Association for Artificial Intelligence, Genova, Italy,
November 29 - December 1, 2016, Proceedings, volume 10037, pages 477–
489, Genova, Italy, November 2016. Springer. ISBN 978-3-319-49130-1. doi:
10.1007/978-3-319-49130-1_35. (Cited on pages 66, 71, and 104.)

[169] Andrea Vanzo, Danilo Croce, Roberto Basili, and Daniele Nardi. Lu4r: adap-
tive spoken language understanding for robots. Italian Journal of Computa-
tional Linguistics, 3(1):59–76, June 2017. (Cited on pages 71, 75, and 104.)

[170] Andrea Vanzo, Danilo Croce, Roberto Basili, and Daniele Nardi. Structured
learning for context-aware spoken language understanding of robotic commands.
In Mohit Bansal, Cynthia Matuszek, Jacob Andreas, Yoav Artzi, and Yonatan
Bisk, editors, Proceedings of the First Workshop on Language Grounding
for Robotics, Vancouver, Canada, August 3, 2017., pages 25–34, Vancouver,
Canada, August 2017. Association for Computational Linguistics. doi: 10.
18653/v1/W17-2804. (Cited on pages 60, 83, and 104.)

[171] Andrea Vanzo, Danilo Croce, Emanuele Bastianelli, Guglielmo Gemignani,
Roberto Basili, and Daniele Nardi. Dialogue with robots to support symbiotic
autonomy. In Kristiina Jokinen and Graham Wilcock, editors, Dialogues with
Social Robots - Enablements, Analyses, and Evaluation, Seventh International
Workshop on Spoken Dialogue Systems, IWSDS 2016, Saariselkä, Finland,
January 13-16, 2016, volume 427 of Lecture Notes in Electrical Engineering,
pages 331–342, Singapore, January 2017. Springer Singapore. ISBN 978-981-
10-2585-3. doi: 10.1007/978-981-10-2585-3_27. (Cited on pages 87 and 104.)

[172] Andrea Vanzo, Luca Iocchi, Daniele Nardi, Raphael Memmesheimer, Dietrich
Paulus, Iryna Ivanovska, and Gerhard K. Kraetzschmar. Benchmarking
speech understanding in service robotics. In 4th International Workshop on
Artificial Intelligence and Robotics (AIxIA), volume 2054 of CEUR Workshop
Proceedings, pages 34–40. CEUR-WS.org, 2017. (Cited on pages 75 and 104.)

[173] Andrea Vanzo, Jose L. Part, Yanchao Yu, Daniele Nardi, and Oliver Lemon.
Incrementally learning semantic attributes through dialogue interaction. In
Proceedings of the 17th Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS ’18, page To appear. International Foundation for Autonomous
Agents and Multiagent Systems, 2018. (Cited on pages 9, 23, 85, and 104.)

[174] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its
Applications, 16(2):264–280, 1971. doi: 10.1137/1116025. (Cited on page 132.)



126 Bibliography

[175] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.
(Cited on page 135.)

[176] Marilyn A. Walker, Diane J. Litman, Candace A. Kamm, and Alicia Abella.
Paradise: A framework for evaluating spoken dialogue agents. In Proceedings
of the 35th Annual Meeting of the Association for Computational Linguistics
and Eighth Conference of the European Chapter of the Association for Com-
putational Linguistics, ACL ’98, pages 271–280, Stroudsburg, PA, USA, 1997.
Association for Computational Linguistics. (Cited on pages 93 and 95.)

[177] Michael L Walters, Kerstin Dautenhahn, René Te Boekhorst, Kheng Lee Koay,
Dag Sverre Syrdal, and Chrystopher L Nehaniv. An empirical framework for
human-robot proxemics. In Proceedings of the Symposium on New Frontiers in
Human-Robot Interaction, pages 144–149, Edinburgh, Scottland, 2009. (Cited
on pages 16, 27, and 36.)

[178] Thomas Wasow, Amy Perfors, and David Beaver. The puzzle of ambiguity.
Morphology and the web of grammar: Essays in memory of Steven G. Lapointe,
pages 265–282, 2005. (Cited on pages 5 and 55.)

[179] T. Winograd. Procedures as a representation for data in a computer program
for understanding natural language. Cognitive Psychology, 3(1):1–191, 1972.
(Cited on page 17.)

[180] T. Wisspeintner, T. van der Zant, L. Iocchi, and S. Schiffer. RoboCup@Home:
Scientific competition and benchmarking for domestic service robots. Interac-
tion Studies, 10(3):392–426, 2009. ISSN 1572-0373. (Cited on page 46.)

[181] J. Wu, H. I. Christensen, and J. M. Rehg. Visual place categorization: Problem,
dataset, and algorithm. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4763–4770, October 2009. (Cited on
pages 22 and 86.)

[182] Xiangyang Xu, Yuncheng Li, Gangshan Wu, and Jiebo Luo. Multi-modal deep
feature learning for rgb-d object detection. Pattern Recogn., 72(C):300–313,
December 2017. ISSN 0031-3203. doi: 10.1016/j.patcog.2017.07.026. (Cited on
page 155.)

[183] Shaohua Yang, Qiaozi Gao, Changsong Liu, Caiming Xiong, Song-Chun Zhu,
and Joyce Y. Chai. Grounded semantic role labeling. In Proceedings of
the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 149–159.
Association for Computational Linguistics, 2016. (Cited on page 53.)

[184] Yanchao Yu, Arash Eshghi, and Oliver Lemon. Training an adaptive dialogue
policy for interactive learning of visually grounded word meanings. In Pro-
ceedings of the SIGDIAL 2016 Conference, pages 339–349. Association for
Computational Linguistics, 9 2016. (Cited on page 90.)

[185] Yanchao Yu, Arash Eshghi, and Oliver Lemon. Learning how to learn: An
adaptive dialogue agent for incrementally learning visually grounded word
meanings. In Proceedings of the First Workshop on Language Grounding



Bibliography 127

for Robotics, pages 10–19, Vancouver, Canada, August 2017. Association for
Computational Linguistics. (Cited on page 54.)

[186] Yanchao Yu, Arash Eshghi, Gregory Mills, and Oliver Lemon. The burchak
corpus: a challenge data set for interactive learning of visually grounded word
meanings. In Proceedings of the Sixth Workshop on Vision and Language, pages
1–10. Association for Computational Linguistics, 2017. (Cited on page 96.)

[187] Hendrik Zender, O Martínez Mozos, Patric Jensfelt, G-JM Kruijff, and Wolfram
Burgard. Conceptual spatial representations for indoor mobile robots. Robotics
and Autonomous Systems, 56(6):493–502, 2008. (Cited on pages 18, 22, and 87.)

[188] H. Zhang, X. Xiao, and O. Hasegawa. A load-balancing self-organizing
incremental neural network. IEEE Transactions on Neural Networks and
Learning Systems, 25(6):1096–1105, June 2014. ISSN 2162-237X. doi:
10.1109/TNNLS.2013.2287884. (Cited on pages 89, 90, 155, and 156.)

[189] Xiang Zuo, Naoto Iwahashi, Kotaro Funakoshi, Mikio Nakano, Ryo Taguchi,
Shigeki Matsuda, Komei Sugiura, and Natsuki Oka. Detecting robot-directed
speech by situated understanding in physical interaction. Transactions of
the Japanese Society for Artificial Intelligence, 25(6):670–682, 2010. doi:
10.1527/tjsai.25.670. (Cited on page 17.)





129

Appendix A

Technical Preliminaries

A.1. Machine Learning for Spoken Human-Robot
Interaction

One of the most valuable formal definition of what Machine Learning (ML) is, has
been provided by Tom Mitchell [117]:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.”

omputational Natural Language Learning [43] application, such formulation
allows to define learning systems that can be applied to Natural Language Processing
(NLP) problems. In detail:

• T represents a linguistic task, usually an interpretation process, such as in
semantic annotation, document classification or opinion mining tasks. The
objective is the acquisition from data of a classification function y = f(x) able
to map a text x into its corresponding class y.

• P represents the performance of f , that allow to evaluate the quality of the
resulting computation. It depends on the task objectives and the learning
system requirements.

• E represents data, that are used as available evidence about the target task.
The idea is that a learning system exploits such information in order to acquire
competences to resolve the target problem and the more information are
observed, the highest improvements of the performance P to solve the task T
are expected.

ML is thus a branch of Artificial Intelligence (AI) that refers to the design and
study of systems that can learn from data, i.e., make optimal use of E to optimize P
in solving T.

To this end, the core of any ML problem deals with two main sub-problems,
namely representation and generalization. Representation is a crucial part of a ML
system. It refers to the way data instances and their properties are represented.
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Hence, it establishes the boundaries of what can be observed as part of E, what are
the features that mostly fit the phenomena of the addressed task T and what can
be made available to learn a function, i.e., perform T. Conversely, generalization
is the property that a system should guarantee on unseen data instances; the
conditions under which this can be done are a key object of study in the subfield of
computational learning theory.

This Section explores and sketch some of the ML techniques supporting specific
aspects of Spoken Human-Robot Interaction (SHRI). In particular, the focus will be
on the approaches that have been used to draw this thesis up.

A.1.1. An Introduction to Supervised Learning
The idea underneath supervised learning is that each training example is provided
with its corresponding label. In most cases, labels are manually generated by
human annotators which estimate a label for each example, by exploiting their
knowledge and reasoning skills. Hence, this family of learning algorithm is said to
be supervised as the process of an algorithm learning from the training dataset can
be seen as a teaching process: given the correct answer, the algorithm iteratively
produces predictions on the training data that are, in turn, corrected by the teacher.
The learning process stops whenever the algorithm achieves an acceptable level of
performance.

In this respect, these methods require examples of pairs (x, y), where x ∈ X
represents the observation, i.e., the set of aspects that are useful to characterize a
concept, whereas y ∈ Y represents the correct label to which x can be mapped into.
These pairs are exploited by the learning procedure to generate an approximation of
the concept to be learned, by suggesting which are the features that better represent
the concept itself.

The following subsections discuss and clarify supervised methods exploited in
this thesis.

Support Vector Machines.

A discriminative algorithm learns models able to discriminate novel examples starting
from their available observations x ∈ X and the corresponding labels y ∈ Y. The
algorithm finds an approximation h(x) = ŷ of the ideal function f(x) : T → Y that,
for each novel example x, is able to predict its correct label y, i.e., h(x) ≈ f(x).
Hence, the learning algorithm acquires a set of possible mappings x 7→ f(x, θ), where
the functions f(x, θ) themselves are characterized by the parameters vector θ. Such
automatic tagging process is assumed to be deterministic: it will always output the
same prediction f(x, θ) for a given pair 〈x, θ〉, generating what is called a trained
machine. For example, according to a binary classification schema, for all x and θ
the classifier produces the function f(x, θ) ∈ {−1, 1}, being f(x, θ) = 1 whenever x
belongs to the target class y, while f(x, θ) = −1 the opposite.

PAC-learning. Usually, training examples are randomly extracted and they often
are not a representative sample of the classification function f . A function f is
said to be a Probably Approximately Correct (PAC) learnable function and the
underneath algorithm A is a Probably Approximately Correct learning algorithm, if
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Figure A.1. PAC learning: example of the concept “Average Build”

A produces a hypothesis function h ∈ H that is “good approximation” of f , where
H is the set of all possible hypothesis.

A formal definition of PAC-learning is provided in the following.

Definition A.1 (PAC-learning). Let f : X → Y, f ∈ F be the function to learn.
Let D be the probability distribution over X . Let h ∈ H be the hypothesis function.
Let

Err(h, f) ≡ Px∈D(h(x) 6= f(x)) (A.1)

be the approximation error of h w.r.t. f .
Then, the class of functions F is PAC-learnable iff there exists an algorithm A

such that, ∀f ∈ F , ∀D,∀ε > 0 and ∀δ : 0 < δ < 1, A outputs h such that:

P (Err(h, f) > ε) < δ (A.2)

Operationally, a class of functions F is PAC-learnable if, given a sizable training
set, there exists an algorithm A that outputs a hypothesis h such that there is a
probability less than δ that its error is greater than ε.

A practical example is provided in Figure A.1. The concept (or function) to learn
is “Average Build”, related to the Height and Weight characteristics (or features) of
the subjects. The green points are the positive examples for the average build class,
while the red ones are the negative examples. In order to select only the positive
examples, the easiest way is to define h as the smallest rectangle able to contain
them. Hence, the blue rectangle represents our hypothesis h, while the grey one is
the concept to acquire c. The area between the rectangles is the hypothesis error.
Therefore, we might say that h is an approximation of the concept c with a certain
level of error.

In order to improve the hypothesis approximation, an oversized training set is
required, so that some examples will be located into the error area. Hence, the
training set size is strictly related to the approximation goodness: usually, the bigger
is the training set, the smaller will be the error.



132 A. Technical Preliminaries

… ?

Figure A.2. Points in R2 shattered by separating hyperplanes

VC-dimension. However, some considerations about PAC learning are required.
First, as already said, the number n of training examples considerably affects the
error rate of the hypothesis function h. Second, the ability to learn a specific
concept/function is highly influenced by the learning algorithm itself. Referring to
the example in Figure A.1, a class of linear functions F , instead of rectangular ones,
would not be capable of correctly separating positive and negative examples. This
essential property is formally defined through the VC-dimension [174].

Before introducing the VC-dimension, the definition of shattered set is provided
below.

Definition A.2 (Shattered sets). Let F be a class of binary functions (that is,
∀f ∈ F , f : X → {0, 1}). Then, F is said to shatter S ⊆ X , if ∀S ′ ⊆ S, ∃f ∈ F
such that:

f(x) =
{

0 if x ∈ S ′

1 if x ∈ {S − S ′}
(A.3)

Hence, a set S is shattered by a class of functions F if, for each labeling
combination of elements within S, there exists a function f ∈ F able to discriminate
the positive and negative examples.

Definition A.3 (VC-dimension). The VC-dimension of a class of functions F is
the maximum number of points that can be arranged so that F shatters them.

Figure A.2 provides a geometrical explanation of the Definition A.3. When
considering the class of linear functions, in a R2 space, 3 points can be always
shattered, even selecting every possible configuration. This is not true when 4 points
are considered, as for some configurations the points cannot be separated. Hence,
in this case, V C = 3. It is worth noting that this upper-bound is not the same
for every F . For instance, if we consider the class of axis-aligned rectangles, it is
easy to verify that there exist subsets of 4 points (randomly placed in the space)
that can be shattered by this class, but, for every subset of 5 points, there are some
classifications that cannot be attained. Therefore, here V C = 4.

The following Theorem correlates the error approximation in Definition A.1 with
the VC-dimension.

Theorem A.1 (Vapnik and Chervonenkis). Let H be the hypothesis space and let
be its VC-dimension equals to d. Let S ⊆ X be a sample of m examples. Let D be a
probability distribution over X × {−1, 1}. Then, ∀h ∈ H, if d ≤ m and m ≥ 2

ε :

P (Err(h) ≤ ε(m,H, δ)) = 1− δ (A.4)
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Figure A.3. SVMs’ hyperplanes

where
ε(m,H, δ) = 2

m

(
d× ln

(2ε×m
d

)
+ ln

(2
δ

))
(A.5)

The above Theorem represents an essential building block for the Support Vector
Machine (SVM) learning theory, that aims at minimizing the training set error, with
a VC-dimension as low as possible.

The Support Vector Machine algorithm. Intuitively, the VC-dimension mea-
sures the complexity of the classifiers in the training examples set. When classifiers
are simple enough, then their VC-dimension will be lower, thus minimizing the risk
of error classification of unseen data.

One of the simplest classifier is a linear function:

f(~x, θ) = sgn(~w · ~x+ b) (A.6)

The θ parameters of the above function correspond to (i) the gradient ~w of an hyper-
plane and (ii) its orthogonal distance b from the origin1. Instances are synthesized
in feature vectors ~x in the geometrical space Rd, where each dimension corresponds
to a specific feature (or, aspect) of the observed example. Figure A.3(a) shows a
R2 space where points represent training examples. In this vector space, examples
are modeled considering just two features. Color represents the membership of each
instance to the target class, being the green points examples of the target class. The
aim of the learning algorithm is to acquire the parameters θ = 〈~w, b〉 that allow to
define a linear classifier separating all training examples. The distance of each point
from the hyperplane, along with the sign of such value sgn(~w · ~x+ b), suggests on
which side of hyperplane the examples lie. Hence, this value allows to determine,
or predict, the class assignments. Such values will be positive for the examples
belonging to the class, negative on the contrary.

The use of such classifiers in machine learning can be traced back to Rosenblatt’s
work on the perceptron algorithm [137]. This learning algorithm is fairly straightfor-
ward: instances are processed individually, and their class is predicted. If the output

1 ~w · ~x denotes the inner product of two vectors
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Figure A.4. Best separating hyperplane

prediction is correct, no adjustment is made; otherwise, the parameters ~w and b are
moved in the direction of the point where the mistake occurred. The convergence
of the algorithm after a finite number of iterations has been theoretically proved
in [125]. However, such convergence is guaranteed only if the data set is linearly
separable (see Definition A.4).
Definition A.4 (Linearly separable set). A set of points {~xi, yi}, i = 1, . . . , l where
yi ∈ {−1,+1} are class labels, is called linearly separable if there exists a linear
function f(~xi) such that:

yi · f(~xi) > 0 ∀i = 1, . . . , l (A.7)

However, even if the resulting f allows to separate the training examples, this
might not be true for unseen data. In fact, as shown in Figure A.3(b), the separating
algorithm is not unique and the perceptron algorithm allows to learn only one
classifier among all the possible existing. Thus, according to Theorem A.1, in order
to learn the linear classifier that minimizes the classification error even over unseen
data, the best function will be the one with the smallest value of VC-dimension.

A hyperplane is said to be γ-margin separating hyperplane if

yi(~w · ~xi + b) ≥ γ,∀i (A.8)

where γ is the margin, as the geometric distance of an example ~xi from the hyperplane
(see Figure A.4). From a geometrical point of view, given the separating hyperplane,
two parallel hyperplanes can be selected in a way that there are no training points
between them. Hence, the distance between these two hyperplanes will be 2× γ.

As we would want to prevent data points from falling within the margin region,
a set of constraints are added to the targeted learning algorithm. In fact, the space
can be linearly scaled for ||~w|| such that:

yi(~w∗ · ~xi + b∗) ≥ 1,∀i (A.9)
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where ~w∗ = ~w
||~w|| and b

∗ = b
||~w|| . We thus obtain a γ-margin separating hyperplane

with γ = 1
||~w|| . The measure of the VC-dimension of the linear classifier expressed in

Equation A.9 has a bound that has been defined through the following theorem [175]:

Theorem A.2. Let x ∈ Rd be examples that belong to hyper-sphere of radius R.
The set of γ-margin separating hyperplanes has VC-dimension h bounded by

h ≤ min
(
R2

γ2 , d

)
+ 1 = min

(
R2||~w||2, d

)
+ 1 (A.10)

Hence, among all possible linear classifiers, given a training set projected in
a Rd space (with maximum VC-dimension h = d + 1), we can choose the one
that minimizes the probability of misclassifying an unseen instance. Such optimal
classifier is the one that has the lowest VC-dimension, i.e., the one maximizing
the margin γ or, in other words, the one minimizing the gradient norm ||~w|| of the
hyperplane.

By considering the constraints imposed by Equation A.9, the max-margin sep-
arating hyperplane can be found by solving the following optimization problem,
known as primal problem:

minimize
1
2 ||~w||

2

subject to yi(~w · ~xi + b) ≥ 1, ∀i = 1, . . . , l
(A.11)

A possible approach [25, 175] for solving this particular optimization problem
introduces Lagrange multipliers αi for each constraint. The resulting equation is
known as the Lagrangian function:

L(~w, b, α) = 1
2 ||~w||

2 −
l∑

i=1
αi[yi(~w · ~xi + b)− 1] (A.12)

In order to find the minimum of such function, derivatives are taken with respect to
~w and b, resulting in:

~w =
l∑

i=1
yiαi~xi (A.13)

and
l∑

i=1
yiαi = 0 (A.14)

It is worth noting that Equation A.13 defines that w is obtained by a specific
linear combination of the training points. By replacing them into the primal problem
expressed in Equation A.12, we obtain a dual formulation that allows to determine
the αi:

maximize W (α) =
l∑

i=1
αi −

l∑
i,j=1

yiyjαiαj~xi~xj

subject to
l∑

i=1
yiαi = 0, αi ≥ 0, ∀i = 1, . . . , l

(A.15)
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The solution of such optimization problem is the set of α∗i parameters optimizing
W (α). As described in Equation A.13, the parameter hyperplane is expressed as the

linear combination of training examples, ~w∗ =
l∑

i=1
yiα
∗
i · ~xi, and the corresponding

margin is γ∗ = 1
||~w∗|| . If α

∗
i = 0 for a given xi, then the example is not used in the

decision rule and can be discarded. Points xi, such that α∗i 6= 0, lie on the margin
and are called support vectors. Support vectors determine the decision boundary.
The parameter b is not present in the dual problem, but it can be computed from
any of the primal constraints in Equation A.9 as:

b∗ = yk − w∗ · xk ∀k : αk 6= 0 (A.16)

The resulting classification function f(~x, ~w, b), or simply f(~x), can be thus expressed
as:

f(~x, ~w, b) = sgn(~w · ~x+ b) = sgn

(
l∑

i=1
yiαi~xi · ~x+ b

)
(A.17)

Such formulation can be applied to any linearly-separable case providing the
so-called hard margin classifier, i.e., the hyperplane separating all examples without
exception. However, it is not always a good solution forcing the classifier to separate
all training examples, for the following reasons. First, examples are not always
linearly separable. Second, some of the training examples could be accidentally
assigned to the wrong class or some dimensions of the feature vector ~xi could
represent mis-information. Finally, some examples could be outliers, i.e., observations
geometrically distant from the rest of the data belonging to the same class. In
such cases a better solution might be to relax, when it is necessary, the constraints
introduced in Equation A.9 as follows:

yi(~w · ~xi + b) ≥ 1− ξi (A.18)

The underneath idea is that points lying on the wrong side of the hyperplane are
explicitly penalized by introducing slack variables ξi that control how far from the
hyperplane a point can lies. To this end, the optimization problem becomes:

minimize
1
2 ||~w||

2 + C
l∑

i=1
ξi

subject to yi(~w · ~xi + b) ≥ 1− ξi, ξi ≥ 0,∀i = 1, . . . , l
(A.19)

where the parameter C is a regularization term, which provides a way to control
the trade-off between the size of the margin and cumulative training error and,
therefore, to prevent overfitting. C is chosen by the user, even though are no
general methods for choosing it value; conversely, it is usually set to optimize some
performance measure on the training or validation set during the so-called tuning
process. This particular formulation of the optimization problem is called a soft-
margin classification. As C becomes large, it is unattractive to not respect the data
at the cost of reducing the geometric margin: the result is that Equation A.18 will
tend to approximate the hard-margin definition of Equation A.11. Conversely, when
it is small, it is easy to account for some data points with the use of slack variables
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Figure A.5. A mapping φ which makes separable the initial data points

and to have a fat margin placed, so that it models the bulk of the data. Again,
the solution is then given by a linear combination of inner products with support
vectors.

Kernel methods. As discussed in the previous paragraph, SVMs learn linear
classifiers that are, geometrically speaking, a separating hyperplane f(~x) = ~w ·~x+b =
0, where ~x is the feature vector representation of a classifying object and ~w ∈ Rd
and b ∈ R are the acquired parameters.

However, such a linear classifier is not always learnable from training data, as
the training examples might not be linearly separable. The soft-margin formulation
expressed in Equation A.19 aims at alleviate such problem by allowing the algorithm
to ignore some training instances, that would compromise the quality of the resulting
generalization. When this solution is not applicable, as the non-linearly separation
is a property of the data distribution rather than few isolated instances, a more
suitable approach might be required.

On the left of Figure A.5, a R2 space where objects are not linearly separable is
shown. A straightforward solution might be to define a higher complexity classifica-
tion function, consequently characterized by a higher value of VC-dimension. An
undesired side-effect of this approach is that the risk of misclassification of unseen
data increases. Another solution consists in increasing the vector space dimensional-
ity, by adding novel synthetic dimensions, as shown in Figure A.5 on the right. In
such a R3 space a more informative observation would provide a more representative
space, where a linear classifier (here the bi-dimensional plane) could be easily learned.
This corresponds to the solution provided by manual features engineering. Tough it
might actually provide an effective improvement of the resulting model, it is not a
feasible approach in most cases.

Conversely, a viable solution is to define an effective function, allowing to improve
the representation of training examples without providing an explicit feature engi-
neering step. Such a conversion process is modeled in terms of a projection function
φ : Rd → Rd

′
, mapping points ~x from a d-dimensional space to a d′-dimensional

space, through the application of φ(~xi). In the resulting space, the learning algorithm
can be then applied, so that the classification function in Equation A.17 becomes:

f(~x, ~w, b) = sgn(~w · φ(~x) + b) = sgn

(
l∑

i=1
yiαiφ(~xi) · φ(~x) + b

)
(A.20)

Moreover, the dual formulation of SVM in Equation A.15 suggests that learning
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does not depend on the ~xi geometric representations but only on their pairwise
dot products. Hence, the projection function itself is not actually essential. Hence,
the problem can be reduced to the computation of a Kernel function K(~xi, ~xj) =
φ(~xi) · φ(~xj), so that the optimization problem can be rewritten as:

maximize W (α) =
l∑

i=1
αi −

l∑
i,j=1

yiyjαiαjK(~xi, ~xj)

subject to
l∑

i=1
yiαi = 0, αi ≥ 0,∀i = 1, . . . , l

(A.21)

while the classification function is expressed as:

f(~x, ~w, b) = sgn

(
l∑

i=1
yiαiφ(~xi) · φ(~x) + b

)
= sgn

(
l∑

i=1
yiαiK(~xi, ~xj) + b

)
(A.22)

This is known as the “kernel trick”, as the kernel function is directly applied
over data without ever using the mapping φ. During tagging, the hyperplane is
not directly defined, as it is the linear combination of support vectors, but the
classification is still feasible in terms of the similarity (the dot-product) among the
novel instances and the support vectors. The explicit representation of the novel
feature space is thus never built and it is thus called implicit feature space.

Kernel Methods [150] refer to a large class of learning algorithms based on
inner product vector spaces, among which SVMs are one of the most well known
learning algorithms. The learning algorithm will select the most representative
instances and features in the implicit space, i.e., the space dimensions. Such methods
provide effective statistical predictions without focusing over the construction of
ad-hoc feature representations, but defining meaningful similarity (i.e., kernels)
functions among examples. Moreover, Kernel methods have the advantage that
linear combinations of kernel functions, such as kernel sum or product, can be easily
integrated into SVMs as, in line with [150], such combinations are considered Kernels
themselves. The choice of the kernel combination strategy can be also based on
prior knowledge about the problem. These combinations are very useful to mix
the information provided by the original features, for example acting on different
perspectives (e.g., lexical vs. syntagmatic properties of a sentence or text) on the
original objects, e.g., textual units.

Markovian Model as Classifiers

A generative model assumes the existence of a probability distribution generating
data. However, by forcing the algorithm to estimate the distribution function and
its unknown parameters from observations, a generative model is able to predict
labels for novel examples. However, such a behavior can be achieved only taking
into account some preliminary assumptions:

• data are independent and identically distributed (i.i.d. property);

• data are generated from a mixture model;
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• there exists a one-to-one correspondence between mixture component and label
classes.

As mixture models are able to represent data through different probability distri-
butions, a generative classification task aims at estimating the distribution that
generated a novel example.

Markov chain. A Markov chain is a stochastic process with the Markov property.
The term “Markov chain” refers to the sequence of random variables such a process
moves through, with the Markov property defining serial dependence only between
adjacent periods (as in a “chain”). Hence, it can be used for describing systems
that follow a chain of linked events, where what happens next depends only on the
current state of the system, and not on the past states.

Definition A.5 (Markov chain). A Markov chain is a sequence of random variables
X1, X2, X3, . . . where the following properties hold:

• Limited Horizon Property (i.e. Markov property)
P (Xn+1 = xk|X1 = x1, X2 = x2, . . . , Xn = xn) = P (Xn+1 = xk|Xn = xn)

• Time Invariant Property
P (Xn+1 = xk|Xn = xl) = P (X2 = xk|X1 = xl)

The possible values of Xi form a countable set S called the state space of the chain.

Moves from a state to another one of the system are called transitions and the
probabilities pl,k = P (Xn+1 = xk|Xn = xl) associated to the different transitions
are called transition probabilities. Therefore, the process is characterized by:

• a state space S = {x1 . . . xn}

• a stochastic2 transition matrix P enumerating the transition probabilities

P =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

... . . . ...
pn,1 pn,2 · · · pn,n


• an initial distribution across the state space

πi = P (X1 = xi)

In Figure A.6, an example of Markov chain is provided. The transition probabil-
ities correspond to the following transition matrix:

P =


0.4 0.25 0 0 0.35 0
0 0 0 0 0 1
0 0 0 0 0 1

0.25 0 0.75 0 0 0
0 0 0 0.5 0.5 0

0.9 0 0 0.1 0 0
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Figure A.6. Example of Markov chain (automa representation)

By convention, we assume that all states and transitions have been included in
the definition of the process, so that there is always a next state, and the process
does not terminate.

Hidden Markov Model. A Hidden Markov Model (HMM) is a statistical Markov
model where the system being modeled is assumed to be a Markov process with
unobserved (or, hidden) states. In fact, given the current state, an outcome (or
observation) is generated, according to:

• the associated probability distribution, i.e. emission probability, and

• the transition probability from a state to another, i.e. transition probability.

A formal definition is provided in the following.

Definition A.6 (Hidden Markov Model). A HMM is a tuple < S,O, P,B, ~π >,
where:

• S = {x1 . . . xn} is the state space;

• O = {o1 . . . om} is the output symbols space;

• P is a stochastic transition matrix that describes the probabilities of particular
transitions (i.e., transition probabilities)

P =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

... . . . ...
pn,1 pn,2 · · · pn,n


2Note that, a matrix P is stochastic iff ∀i, j pi,j ≥ 0 and

∑n

j=1 pi,j = 1
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• B is an emission matrix such that, for each state xi and for each possible
output oj, bi(oj) (or, alternatively, bi,j) is the probability that a particular output
symbol oj is observed in a state xi; in other words, bi,j gives the probability
that oj is emitted in state xi.

B =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n
...

... . . . ...
bn,1 bn,2 · · · bn,n


The elements of B matrix are called emission probabilities;

• ~π is the initial distribution across the state space, where each πi is

πi = P (X1 = xi)

In general, when dealing with HMM, three different problems have to be taken
into account:

• Likelihood: compute the probability of an output sequence (o1, . . . , on), given
a model < S,O, P,B, ~π >;

• Decoding: given a model, compute the most likely state sequence that generates
an observed output sequence;

• Parameter estimation: given a set of examples of output sequence and a model
space, find the most likely model that generates the example set.

The above problems are further analyzed in the following.

Likelihood. The Likelihood problem [92] is the task of computing, given the
parameters of the model, the probability of a particular output sequence P (Oi),
where Oi = (ok1 , . . . , okT

) is an observed sequence. Among the possible solutions,
one is by applying brute force as follows: compute P (Oi) by summarizing the
probabilities of all paths (si1 , . . . , siT ) that are able to generate Oi. However, this
approach is not feasible, as it can be performed at high computational cost.

A more viable approach is to apply the principle of dynamic programming. The
idea behind dynamic programming is quite simple. In general, a given problem is
decomposed into different subproblems, their solutions are stored and then combined
to get an overall solution. It can be seen as a further optimization of the divide
and conquer approach, where, due to recursion, many of the subproblems might be
generated and solved many times. Conversely, the dynamic programming method
seeks to solve each subproblem only once, thus reducing the number of computations:
whenever the solution to a given subproblem has been computed, it is stored and
looked-up when needed, without any other computational overhead. The Likelihood
problem is usually handled through the Forward Algorithm, that is an instance of
the dynamic programming pattern.
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Figure A.7. Example of trellis

Let Θt be a random variable that represents the output symbol at time t. Let
αt(i) be the probability of the partial observation sequence O≤t = (ok1 , ok2 , . . . , okt)
to be produced by all possible state sequences that end at the ith state:

αt(i) = P (O≤t;Xt = xi) = P (Θ1 = ok1 , . . . ,Θt = okt ;Xt = xi) (A.23)

Then, the unconditional probability of the partial observation sequence is the sum of
αt(i) over all N states. Forward Algorithm is a recursive algorithm for calculating
αt(i) for the observation sequence of increasing length t. First, the probabilities for
the single-symbol sequence are calculated as a product of initial ith state probability
and emission probability of the given symbol ok1 in the ith state:

α1(i) = πi · bi(ok1) (A.24)

Then, the recursive formula is applied. Assume αt−1(i) has been calculated for some
t− 1. To calculate αt(j), every αt−1(i) is multiplied by the corresponding transition
probability bi,j from the ith state to the jth state, sum the products over all states,
and then multiply the result by the emission probability of the symbol okt , bi(okt):

αt(i) =

 N∑
j=1

αt−1(j)pi,j

 · bi(okt) (A.25)

Iterating the process, αT (i) can be calculated, and then summing them over all
states, the required probability is obtained.

Figure A.7 shows the trellis diagram that allows to efficiently represent the
Forward Algorithm.
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Decoding. As well as the Likelihood one, the Decoding problem [92] is solved
through dynamic programming, as brute force would result too much expensive in
terms of computational cost.

The Viterbi algorithm is a dynamic programming approach that is usually used to
solve the Decoding problem. It chooses the best path that maximizes the likelihood
of the state sequence for a given observation sequence. The Viterbi Algorithm uses
the same schema as the Forward algorithm, but it employs maximization in place of
summation within the recursion step. Let δt(i) be the maximal probability of state
sequences of the length t that end in state i and produce the t first observations
for the given model. Then, the probabilities for the single-symbol sequence are
calculated as:

δ1(i) = πi · bi(ok1) (A.26)
whereas each δt(i) is computed as:

δt(i) = max1≤j<N [δt−1(j)pi,j ] · bi(okt) (A.27)

Parameter estimation. The Parameter Estimation problem refers to the
computation of the model parameters, namely the transition probabilities matrix P ,
the emission probabilities matrix B and the initial distribution ~π.

Several supervised approaches allow to compute, given a training set of labeled
examples, the above parameters through maximum likelihood estimation, by exploit-
ing the evidences of the frequencies of the observation. Other approaches aim at
iteratively improving the estimation of parameters [92]. These methods are known
as Expectation Maximization (EM) algorithms [107].

HMMs are the most popular techniques of temporal classification, finding appli-
cation in manifold areas like speech, handwriting and gesture recognition. In the
textual domain, these models are often employed in Named Entity recognition and
Part-Of-Speech (POS) tagging tasks.

Structural Support Vector Machines

A different formulation of the HMM optimization problem has been proposed in [165].
In contrast with the SVM algorithm introduced in Section A.1.1, given a set of pairs
(~x1, ~y1), . . . , (~xn, ~yn) ∈ X ×Y , Structural Support Vector Machine (SVMstruct) learns
a function f : X → Y, where Y is a set of structured outputs, such as sequences,
sets, or trees. The approach is to learn a discriminant function F : X ×Y → R over
input/output pairs from which a prediction is derived by maximizing F over the
response variable for a specific given input ~x. Hence, the general form of hypothesis
f is

f(~x; ~w) = arg max
~y∈Y

F (~x, ~y; ~w) (A.28)

where ~w denotes a parameter vector. It might be useful to think of F as a ~w-
parameterized family of cost functions. F is assumed to be linear in some combined
feature representation of inputs and outputs Ψ(~x, ~y),

F (~x, ~y; ~w) = 〈~w,Ψ(~x, ~y)〉 (A.29)

where Ψ(~x, ~y) depends on the nature of the specific problem.
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Learning over structured output spaces Y inevitably involves loss functions other
than the standard zero-one classification loss: it is assumed the availability of a
bounded loss function ∆ : Y × Y → R where ∆(~y, ~y∗) quantifies the loss associated
with a prediction ~y∗, if the true output value is ~y.

Assuming that ∆(~y, ~y∗) > 0 for ~y 6= ~y∗ and ∆(~y, ~y), then the condition of zero
training error can then be compactly written as a set of non-linear constraints

∀i : max
~y∈Y\~yi

〈~w,Ψ(~xi, ~y)〉 ≤ 〈~w,Ψ(~xi, ~yi)〉 (A.30)

Each nonlinear inequalities in A.30 can be equivalently replaced by |Y| − 1 linear
inequalities, resulting in a total of n|Y| − n linear constraints,

∀i,∀~y ∈ Y\~yi : 〈~w, δΨi(~y)〉 > 0 (A.31)

where δΨi(~y) ≡ Ψ(~xi, ~yi)−Ψ(~xi, ~y).
The resulting hard-margin optimization problem is{

min
~w

1
2 ||~w||

2

∀i,∀~y ∈ Y\~yi : 〈~w, δΨi(~y)〉 ≤ 1
(A.32)

To allow errors in the training set, slack variables are introduced to optimize a
soft-margin criterion:  min

~w,ξ

1
2 ||~w||

2 + C

n

n∑
i=1

ξi s.t.∀i, ξi ≥ 0

∀i,∀~y ∈ Y\~yi : 〈~w, δΨi(~y)〉 ≤ 1− ξi
(A.33)

where C > 0 is a constant that controls the trade-off between training error mini-
mization and margin maximization.

The Equation A.33 implicitly considers the zero-one classification loss; this is
inappropriate for problems like natural language parsing, where |Y| is large. An
approach is to re-scale the slack variables according to the loss incurred in each of
the linear constraints. Intuitively, violating a margin constraint involving a ~y 6= ~yi
with high loss ∆(~yi, ~y) should be penalized more severely than a violation involving
an output value with smaller loss. This can be accomplished by multiplying the
violation by the loss, or equivalently, by scaling slack variables with the inverse loss:

min
~w,ξ

1
2 ||~w||

2 + C

n

n∑
i=1

ξi s.t.∀i, ξi ≥ 0

∀i,∀~y ∈ Y\~yi : 〈~w, δΨi(~y)〉 ≤ 1− ξi

∆(~yi,~y)

(A.34)

The dual formulation of Equation A.32 can be derived as in normal SVM. Let
αi~y the Lagrange multiplier enforcing the margin constraint for label ~y 6= ~yi and
example (~xi, ~yi). Using standard Lagrangian duality techniques, one arrives at the
following dual formulation

max
α

∑
i,~y 6=~yi

αi~y −
1
2
∑
i,~y 6=~yi
j,~y 6=~yj

αi~yαj~̄y 〈δΨi(~y), δΨj(~y∗)〉

s.t. ∀i,∀~y ∈ Y\~yi : αi~y ≥ 0

(A.35)
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Examples of problems with complex outputs are natural language parsing, se-
quence alignment in protein homology detection, and Markov models for part-of-
speech tagging. Moreover, the SVMstruct algorithm can also be used for linear-time
training of binary and multi-class SVMs.

Multi-Class Support Vector Machine classifier. Themulti-classification prob-
lem refers to a classification task where the labels set cardinality is |Y| ≥ 2. A
possible approach is to exploit several binary classifiers in a One-VS-All fashion: for
each class y ∈ Y a binary classifier is trained and the resulting label y∗ is the one
with the best predicting score. This approach is quite complex, as |Y| training and
classification steps are required.

The maximization function is defined as:

min 1
2

k∑
i=1
|w|2 + C

n

n∑
i=1

ξi

s.t. :
∀y ∈ [1, . . . , k] : [x1 · wyi ] ≥ [x1 · wy] + 100 ·∆(y1, y)− ξ1
. . .
∀y ∈ [1, . . . , k] : [xn · wyn ] ≥ [xn · wy] + 100 ·∆(yn, y)− ξn

(A.36)

The above optimization problem is very fast in the linear case; moreover, it
enables the Winner-Takes-All multi-class classification [39].

Hidden Markov Support Vector Machines. The Hidden Markov Support
Vector Machine (SVMhmm) classifier implements a structured SVM that is able
to predict labels sequences. This formulation [5] refers to the HMM theoretical
constructs introduced in Section A.1.1.

Given an input sequence of feature vectors X = (~x1, . . . , ~xl), the model predicts
a label sequence Y = (y1, . . . , yl), according to the linear discriminant function:

Y ∗ = arg max
∀Y


l∑

i=1

 k∑
j=1

(~xi · ~wyi−j ... yi) + Φtr(yi−j , . . . , yi) · ~wtrans

  (A.37)

where

• ~wyi−k ... yi is the emission weight vector for the kth-order label sequence
(yi−k . . . yi);

• Φtr(yi−k, . . . , yi) is an indicator vector that has exactly one entry set to 1
corresponding to the sequence (yi−k . . . yi);

• ~wtrans is a transition weight vector for the transition weight between adjacent
labels.

In line with the structured formulation, the SVMhmm classifier requires the
implementation of a function Ψ(X,Y ) that considers two type of features:

• the interactions between attributes of the observation ~xi and a specific label
yi, i.e. the ~xi by yi emission property;
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• interactions between neighboring labels yi along the chain.

In order to assign a label sequence to an input chain, the function Ψ(X,Y ) has
been developed so that a Viterbi decoding algorithm can be applied.

Given a set of pairs (X1, Y 1), . . . , (Xn, Y n), where each Xk = (~xk1, . . . , ~xkl ) is a
sequence of vectors and each Y k = (yk1 , . . . , ykl ) is the corresponding label sequence,
a SVMhmm classifier is trained solving the following optimization problem

min 1
2 |~w|

2 + C
n

n∑
i=1

ξi

s.t.

∀Y :
l∑

i=1
(~x1
i · ~wy1

i
) + Φtrans(y1

i−1, y
1
i ) · ~wtrans ≥

l∑
i=1

(~x1
i · ~wyi) + Φtrans(yi−1, yi) · ~wtrans + ∆(Y 1, Y )− ξ1

. . .

∀Y :
l∑

i=1
(~xni · ~wyn

i
) + Φtrans(yni−1, y

n
i ) · ~wtrans ≥

l∑
i=1

(~xni · ~wyi) + Φtrans(yi−1, yi) · ~wtrans + ∆(Y n, Y )− ξn

(A.38)

where ∆(Y i, Y ) is the loss function, computed as the number of misclassified labels
in the sequence.

The proposed SVMhmm algorithm is parametric with respect to emission and
transition orders. In other words, with a transition order k > 1, the training and
classification tasks will depend on a k-transition order Markov chain. Note that the
higher is the k value, the higher is the training computational time, as a longer story
of transition is considered.

A.1.2. An Introduction to Automated Decision Making
Decision making is the cognitive process of making choices by identifying a decision,
gathering information, and assessing alternative resolutions. Every process produces
a decision, that is expected to be optimal given the gathered information. In
literature, manifold mathematical frameworks have been proposed to model the
decision making process in autonomous agents. This section introduces a class of
stochastic decision-making algorithms, Markov Decision Processs (MDPs), whose
main goal is to maximize the expected utility of a sequence of interactions with a
stochastic process. Then, Reinforcement Learning (RL) is reviewed as an approach
for solving a MDP by acquiring the required transition probabilities.

Markov Decision Processes

The MDP [20] is a well-known model designed for planning and decision making
in discrete settings. In this framework, the decision process is modeled through a
set of states S and a set of actions A, enabling the agent to transition from a state
s ∈ S to the next state s′ ∈ S. The overall process can be thus described as a graph,
where nodes represent the states S and edges (or, arcs) refer to actions A. Each
pair 〈s, a〉 is associated to reward rs,a; the transition from states to states can be
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Figure A.8. Example of a Markov Decision Process

deterministic or stochastic. Depending on the ability of the agent to observe the
entire current environmental state, the decision process might be called either fully
observable (MDP) or partially observable (Partially Observable Markov Decision
Process (POMDP)). For the purposes of this thesis, only the fully observable setting
will be reviewed. A MDP can be thus formalized as follows:

Definition A.7 (Markov Decision Process). A Markov decision process is a
tuple

MDP = (S,A, T,R, γ)

where:

• S is the set of states of the environment;

• A represents the set of actions;

• T : S × A × S → [0, 1] is a probabilistic transition function modeling the
transition from state s ∈ S to s′ ∈ S, when the agent takes the action a ∈ A;

• R : S ×A→ R is the reward function, mapping a pair 〈s, a〉 into a real-valued
reward rs,a ∈ R;

• γ ∈ (0, 1] is a discount factor.

Figure A.8 shows an example of MDP, where both the sets of states S and actions
A are composed of two elements, {s0, s1} and {a0, a1}, respectively. Transition
probabilities and reward function can thus be represented by two 2 × 2 matrices,
covering all the possible combinations of states/actions.

Given the current formalization, transitions and rewards are subject to the
Markovian property, so that they depend just on the current state. Conversely,
decisions are represented through a policy π, defining the behavior of the agent. In
fact, π provides a mapping from states to actions. Policies can be either deterministic
or stochastic. While in deterministic policies π(s) the unique action is based only on
the current state, stochastic policies provide a probability distribution π(a|s) ∈ [0, 1]
over the whole actions set A.
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When a policy is being executed, the agent interacts with its environment in dis-
crete time-steps, defining a sequence of state-action pairs ζ = (〈s0, a0〉, . . . , 〈sT , aT 〉),
and the corresponding cumulative reward R(ζ) = ∑T

t=0 γ
tR(st, at). Hence, the goal

of a deterministic agent is to find a policy π(s), such that its expected cumulative
reward Eζ|π[R(ζ)] is maximized. The expected cumulative reward can be obtained
through the state-value function V π(s):

V π(s) =
∑
a

π(a|s)Qπ(s, a) (A.39)

where Qπ(s, a) is the action-value function:

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)V π(s′). (A.40)

Intuitively, while the state-value function expresses the expected value of following
policy π forever when the agent starts following it from state s, the action-value
function represents the expected value of first taking action a from state s and then
following policy π forever.

In line with [157], under the Bellman’s Principle of Optimality [21], where “an
optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision”, it is possible apply the Bellman optimality
equation to Eq. A.39 and A.40:

V ∗(s) = max
a
{R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)} = max
a

Q∗(s, a) (A.41)

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′) max
a′

Q∗(s′, a′) (A.42)

= R(s, a) + γ
∑
s′

T (s, a, s′)V ∗(s′)

obtaining the definition of an optimal policy greedily determined with one look-ahead,
as in Eq. A.43, or just by choosing the best action according the optimal action-value
function A.44:

π∗(s) = arg max
a
{R(s, a) + γ

∑
s′

T (s, a, s′)V ∗(s′)} (A.43)

π∗(s) = arg max
a
{Q∗(s, a)}. (A.44)

Learning Decision Policies

Once an environment has been defined as a MDP, it remains unsolved how to
properly shape and acquire a policy, that allows an agent to navigate through the
environment.

RL is an area of machine learning related to modeling the way agents can take
actions within an environment, in order to maximize some notion of cumulative
reward. Hence, a RL agent interacts with its MDP environment in discrete time
steps. At each time t, the agent observes the current state st. Then, it chooses an
action at from the set of available actions, which is subsequently reflected into the
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Figure A.9. Typical sketch of a Reinforcement Learning agent

environment. This decision produces a reward rst,at for the agent. The environment
thus moves to a new state st+1. At the end, the goal of a RL agent is to get as much
reward as possible. In Figure A.9, a typical representation of the whole process is
displayed.

The main difference between RL and standard supervised learning algorithms
lies in how examples are presented to the learning algorithm. In fact, while standard
supervised learning requires a dataset of labeled input/output pairs to acquire the
model, RL doeas not acquire the policy starting from a labeled dataset. Conversely,
RL leverages the concept of policy performance, finding a trade-off between explo-
ration (of the uncharted state space) and exploitation (of the current policy). In
fact, to better assess an optimal policy, a RL agent requires a proper tuning of
the exploration mechanism. The random selection of actions results not the best
choice in terms of performance. A solution is represented by the ε-greedy method:
the agent chooses an action according to its policy π (the one providing the best
long-term effect) with probability 1− ε; otherwise, with probability ε an action is
uniformly drawn from the set A. It is worth noting that 0 < ε < 1 is a tuning
parameter, which is either changed to make the agent explore progressively less, or
based on some heuristics.

SARSA algorithm. The State-Action–Reward-State-Action (SARSA) is a RL
algorithm for the acquisition of a MDP policy. It has been initially proposed
by Rummery and Niranjan [141] with the name Modified Connectionist Q-Learning
(MCQ-L) and then refined by Sutton and Barto [157]. SARSA owes its name to the
way the Q-value is updated. In fact, the action-value function Q(st, at) depends on
the current state of the agent st (S), the action the agent chooses at (A), the reward
rst,at the agent gets for choosing this action (R), the state st+1 that the agent goes
given that action (S), and, finally, the next action at+1 (A) the agent chooses in the
new state st+1.

Operationally, the Q-value Q(st, at) for the state-action pair 〈st, at〉 represents
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the possible reward received in the next time step for taking action at in state st,
plus the discounted future reward received from the next state-action observation,
performed with a given learning rate. More formally:

Q(st, at)← Q(st, at) + α [rt + γQ(st+1, at+1)−Q(st, at)] (A.45)

where α and γ are the hyperparameters. In fact, α controls the learning rate,
determining to what extent newly acquired information overrides old ones. When
α = 0, the agent doe not learn anything, whereas with α = 1 the agent consider
only the most recent information. Conversely, γ is a discount factor defining to
what extent future rewards impact on the Q-value. Again, when γ = 0, the agent
considers only the current reward; on the contrary, if γ → 1, long-term reward will
highly impact on the Q-value.

A.1.3. Generalizing Lexical Semantics through Distributional
Models

In Section A.1, ML has been introduced as a dichotomy between Representation
and Generalization. The latter has been accounted into the previous sections, by
introducing several ML approaches and algorithms. The final goal of these machines
is to generalize a concept, starting from a bunch of examples represented in a
machine-readable fashion. Into this section, we will explain the way such vectors are
composed, with a special focus on the linguistic domain.

The representation of words and their meaning is a central problem in Com-
putational Linguistics. When language learning is applied to generalize linguistic
observations of the targeted phenomena, the information carried by single words
play a crucial role in the resulting quality of the underlying statistical models.

Suppose two robotic commands

“can you bring the book on the table”

and

“can you bring the volume on the table”

that are supposed to express the same meaning. They differ each other just for the
surface forms of the book concept. In fact, although according to WordNet [116]
book and volume may evoke 15 and 6 different concepts respectively (or, in WordNet,
synsets), they share at least one of them. That is, given the contexts in which they
appear, one might exclude out of context meanings such as the action of reserving
something (to book) or the magnitude of sound (volume). Hence, without a proper
generalization of words representation, the sparse nature of the natural language
lexicon does not allow to catch and compare the actual meaning of different surface
forms.

In order to define a learning algorithm providing an effective lexical generalization
without a strong dependency from hand-built resources, an automatic approach to
acquire and generalize lexical information directly from data is here discussed. Such
acquisition is managed through the distributional analysis of large scale corpora.
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Linguistic phenomena, here words, are modeled according to a geometrical perspec-
tive, i.e., points in a high-dimensional space representing semantic concepts, in such
a way that similar, or related, concepts are near each another in the space.

Distributional approaches represent lexical semantics through the analysis of
observations in large-scale corpora. The fundamental intuition is that the meaning
of a word can be described by the set of textual contexts in which it appears. It is
commonly known as Distributional Hypothesis [75] and can be synthesized from the
following statement in [148]:

Words with similar meanings will occur with similar neighbors if enough text
material is available.

The idea is thus to acquire a synthetic representation of a targeted word w,
considering all other words co-occurring with w, such that words sharing the same
co-occurrences will be represented similarly. A lexical similarity function can be
thus defined in terms of similarity between these representations. It is worth noting
that a good approximation of the words distributional information can be achieved
whenever a sufficient amount of observations is gathered.

The Word Space Model

In this thesis, the distributional representation of words is acquired according to a
geometrical perspective, i.e., words are represented as vectors whose components
reflect the corresponding contexts. This allows to define a high-dimensional space
known as Word Space, where the distance among instances, i.e., words, reflects the
lexical similarity, as described in [147]:

Vector similarity is the only information present in Word Space: semantically
related words are close, unrelated words are distant.

Words are points in this space and whenever two words have similar contexts, they
will have a similar representations and they will be close in the space.

From a linguistic perspective, they are likely to be related by some type of generic
semantic relation, either paradigmatic (e.g., synonymy, hyperonymy, antonymy)
or syntagmatic (e.g., meronymy, conceptual and phrasal association), as observed
in [143].

From a computational perspective, a matrixM is acquired through the analysis of
large corpora, with the rows describing words as vectors ~wi, and columns representing
the corpus contexts ~cj . Hence, each entry wi,j will be a measure associating words
to contexts. Given two words w1 and w2, a function accounting for their similarity
can be estimated by evaluating the Cosine Similarity between the corresponding
projections ~w1, ~w2:

cos(w1, w2) = ~w1 · ~w2
||~w1||||~w2||

(A.46)

thus measuring the angle between such vectors.
When building such representations, three different typology of context can be

exploited. In the Topical space two words are expected to have a similar geometric
representation if they tend to appear in the same documents of a corpus. The
Syntax-based space aims at capturing paradigmatic relations by imposing strict
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syntactic constraints over the context selection. Finally, the Word-based space aims
at providing a distributional lexical model while capturing paradigmatic relations
between target words (tws). Paradigmatic relations concern substitution and relate
entities that do not co-occur in the text; a paradigm is thus a set of such substitutable
entities. In a Word-based space, vectors represent tws, while dimensions are words
appearing in a k-windows around the tws [143]. Consider, for example, the adjectives
beautiful, attractive and pretty. They are synonyms in phrases like “the beautiful
girl”, “the attractive girl” or “the pretty girl”. This trivial example is already enough
to catch the informative load brought by the context. In fact, it is straightforward
noticing that these words co-occur with the word “girl”. Hence, whenever words
can be exchanged in the accounted language without altering the meaning of a
sentence, in a large-scale document collection they will tend to co-occur with in
the same contexts. Correspondingly, if vector dimensions correspond to words in
the corpus, in a Word-based space tws co-occurring with the same set of words
are similarly represented, having initialized almost the same set of geometrical
components. However, this property does not hold just for synonyms, as words
involved in a paradigmatic relation will benefit of the same properties. An example
is provided by the terms knife or rifle that, though not synonyms, they can be
exchanged in a text, as sharing a consistent subset of co-occurring words.

In this words-by-words matrix each item is a value counting the co-occurrences
between a tw and other words in the corpus, within a given window of word tokens.
The window width k is a parameter allowing the space to capture different lexical
properties: larger values for k tend to introduce more words, i.e., possibly noisy
information, whereas lower values lead to stricter forms of similarity/equivalence.
Moreover, in order to capture shallow syntactic information, words co-occurring on
the left context are treated separately from words occurring on the right one.

Lower Dimensional Vector Spaces

The quality of a Word Space is tied to the amount of information analyzed and the
more contextual information is provided, the more accurate will be the resulting
lexical representation. However, some problems of scalability arise when the number
of the space dimension increases. From a computationally perspective, a space
with thousand dimensions make the similarity estimation between vector expensive.
Consequently, even a simple operation (e.g., the search of the most similar words to
a target word) can be prohibitive in terms of computational cost. Moreover, from a
geometric perspective, the notion of similarity between vectors is sparsely distributed
in high-dimensional space.

Fortunately, employing a geometrical representation for words enables the adop-
tion of dimensionality reduction techniques to reduce the complexity of the high-
dimensional space. The resulting representation of the initial vector space will
contain the same, but denser, information. In fact, the new dimensions can not
be mapped directly to dimensions of the initial matrix; conversely, each dimension
will represent a newly synthesized (and more informative) feature. Such techniques
allow to exploit data, i.e., words and contexts, distribution and topology in order
to acquire a more compact representation and define more meaningful data-driven
metrics.
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In the following, two approaches for lowering matrix dimensionality are presented:
while the former is based on linear algebra factorization, the latter exploits non-linear
combinations of weights in a neural net.

Latent Semantic Analysis An example of linear dimensionality reduction tech-
nique is Latent Semantic Analysis (LSA) [101]. The original word-by-context matrix
M is decomposed through Singual Value Decomposition (SVD) [69] into the product
of three new matrices: U , S, and V so that S is diagonal and

M = USV T (A.47)

M is then approximated to
Mk = UkSkV

T
k (A.48)

in which only the first k columns of U and V are used, so that only the first k
greatest singular values are considered. This approximation supplies a way to project
a generic term wi into the k-dimensional space using W = UkS

1
2
k , where each row

~wki corresponds to the representation vectors ~wi. The original statistical information
about M is captured by the new k-dimensional space which preserves the global
structure while removing low-variant dimensions, i.e., distribution noise.

The lexical similarity can still be computed in such reduced space through the
cosine similarity (Equation A.46), in a space with a reduced number of dimensions
(e.g., k = 250) where the notion of distance is significantly more informative with
respect to the original space. These newly derived features may be considered
latent concepts, each one representing an emerging meaning component as a linear
combination of many different original contexts.

Word Embeddings through Neural Networks The term word embeddings
appeared for the first time in 2003, when Bengio et al. [22] proposed a new vector
space trained through a neural language model. Later on, Collobert and Weston
[37] demonstrated the power of pre-trained word embeddings, establishing word
embeddings as a highly effective tool when applied to downstream tasks and proposing
a neural network architecture that many of today’s approaches are built upon.
However, in 2013 Mikolov et al. [115] brought word embeddings to the forefront by
designing, implementing and releasing a toolkit enabling the training and use of
pre-trained embeddings, namely, word2vec.

word2vec implements the most popular toolkit for generating high-quality word
vectors from huge datasets. In fact, it relies on the probabilistic feed-forward Neural
Network Language Model (NNLM) proposed in [22] and defines two new different
architectures A.10.

The first architecture A.10(a) is similar to the feed-forward NNLM. It aims at
predicting the current word based on the context. While the non-linear hidden layer
is removed, the projection layer is shared for all words. Hence, words are projected
into the same position. This architecture is called a bag-of-words model as the order
of words in the history does not influence the projection. As also words from the
future are available, both previous and next words of the target one are considered as
input. This further extension takes the name of Continuous Bag-Of-Word (CBOW),
denoting that the model uses a continuous distributed representation of the context.
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Figure A.10. Model architectures proposed in word2vec

The second architecture A.10(b), called Continuous Skip-gram model, is similar
to the previous one. However, differently from the CBOW, it tries to maximize the
classification of a word based on another word in the same sentence. Operationally,
given a word as input to a log-linear classifier, it predicts words of the previous and
next context of a certain window. The range is selected as a trade-off between word
vectors quality and computational complexity.

A.2. Machine Learning for Visual Perception
As we stated before, HRI is a research area where many different interaction modali-
ties are being studied. Understanding what we say, following our to make a guess
about what we are talking about, catching our finger pointing an object to disam-
biguate persisting ambiguities are essential capabilities that a robot should provide, in
order to intelligently interact with users. In fact, interactions require the perception
of a signal, be it audio, visual, or haptic.

This section focuses on vision processing, again, an essential component in any
modern robotic platform. For instance, vision capabilities allow the robot to actively
perceive the environment, as well as to identify and recognize the entities therein.
Hence, this capability may play a key role in creating structured representations of
the environment, supporting the Human Augmented Semantic Mapping. A major
requirement enabling this feature is the access to a sensing system (e.g., RGB-D vs.
stereo cameras, laser scanners, . . . ), even though most of the commercial/research
robotic platforms are already equipped with this kind of devices, as well as the
software layer devoted to processing such input signals.

Recently, a huge effort is being spent on the research on object recognition
for robotic applications. The reason for such a growing interest is due to several
elements. First, object detection and recognition is a capability that has a wide
applicability in real scenarios, ranging from mobile applications up to the robotic
domain. Moreover, the continuously increasing availability of large scale datasets
helped in promoting the application of deep learning techniques to this problem.



A.2 Machine Learning for Visual Perception 155

At the same pace, the development of new ad-hoc architectures of neural networks
provided a huge boost.

For example, in [153, 182], deep learning techniques are exploited to detect and
recognize objects in a real scene. The architecture dominating image classification
is the Convolutional Neural Network (CNN), that seems to outperform any other
architecture thanks to its convolutional layer. Other approaches are based on transfer
learning techniques, as the zero-shot learning [83, 100] or one-shot learning [91].
However, these approaches are focused on attribute-learning; as a consequence,
a pre-trained visual classifier for extracting attributes is required. Some works
proposed to apply kernel-based learning algorithms to object classification. For
example, in [99, 129, 149], SVMs are trained to recognize objects in real scenarios. In
particular, a combined CNN/SVM approach is proposed in [149], where a pre-trained
CNN is used to automatically generate feature vectors, whereas a SVM perform the
actual classification of the scene. However, the works that are closer to the purpose
of this thesis are the ones leveraging Human-Robot Interaction (HRI) to acquire
objects label [91, 131, 151]. The main idea is that once a new item is shown, the
robot starts a dialogic interaction with the tutor to acquire the corresponding label.
Hence, the dataset is provided incrementally, and the more interaction, the bigger
will be the training set.

Though promising, most of the cited approaches work on fully labeled training
dataset, and the number of classes, along with their categories, must be known in
advance. Hence, the main goal is thus to achieve good performance on a set of
predefined objects, rather than focusing on learning new categories once the system
is in operation. This represents a major limitation for a real scenario application, as
a complete prior knowledge about what one may find within an environment is a
constraint rather unrealistic.

To overcome such limitation, a class of incremental neural networks is introduced
in the following, enabling the incremental acquisition of unseen objects’ categories.

A.2.1. Load-Balancing Self-Organizing Incremental Neural
Network

Load-Balancing Self-Organizing Incremental Neural Network (LB-SOINN) [188] is
an unsupervised learning algorithm based on Self-Organizing Incremental Neural
Network (SOINN) [58] that is, in turn, built upon the concept of Self-Organizing
Map.

This method allows to learn a model that reflects the underlying topology of
the data distribution, without the need to provide number and label of classes in
advance. In fact, being an unsupervised classification method (data clustering),
the problem is defined as finding homogeneous groups of data points in a given
multidimensional data set.

The underlying idea is that each node in the network has an associated weight
which lives in the feature space. Every time a new image is input to the vision
module, the LB-SOINN algorithm assesses whether a new node has to be added to
the network, based on the feature vector similarity to all the other nodes’ associated
weights. If no node is added, then the closest node and its neighbors’ weights are
updated, and the two closest nodes are joined by an edge. In this manner, the
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structure of the network evolves to reflect how the data is distributed in the feature
space.

LB-SOINN is a further improvement of the Enhanced Self-Organizing Incremental
Neural Network (E-SOINN) [59], whose main limitation are (i) a strong dependency
on the sequence of input data, (ii) instability of the learning algorithm, causing
multiple (and not required) combination and separation of high-density overlapped
areas and (iii) the Euclidean distance is used as metric to find the nearest node.
These limitations are overcome in LB-SOINN, by introducing the following novelties:
(i) load balancing between nodes, to alleviate dependency on the sequence of input
data; (ii) combination and separation of subclasses based on Voronoi tessellation,
to avoid multiple combinations and separation of subclasses; (iii) a combination of
different distance metrics (i.e., Euclidean distance and cosine similarity), to defeat
the curse of dimensionality.

For further details on LB-SOINN, the reader should refer to [188].
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